谢玲玲,方天宇,牛亚然,洪督,王子昱,祝世超,郑学斌.TiAl合金表面等离子喷涂制备新型热障涂层沉积过程的热应力演化有限元模拟[J].表面技术,2025,54(11):231-242.
XIE Lingling,FANG Tianyu,NIU Yaran,HONG Du,WANG Ziyu,ZHU Shichao,ZHENG Xuebin.Finite Element Simulation of Thermal Stress Evolution during the Deposition of a New Thermal Barrier Coating Prepared by Plasma Spraying on the Surface of TiAl Alloy[J].Surface Technology,2025,54(11):231-242
TiAl合金表面等离子喷涂制备新型热障涂层沉积过程的热应力演化有限元模拟
Finite Element Simulation of Thermal Stress Evolution during the Deposition of a New Thermal Barrier Coating Prepared by Plasma Spraying on the Surface of TiAl Alloy
投稿时间:2024-10-13  修订日期:2025-01-23
DOI:10.16490/j.cnki.issn.1001-3660.2025.11.020
中文关键词:  三维热力耦合模拟  等离子喷涂  逐道逐层  热障涂层  热应力
英文关键词:three-dimensional thermodynamic coupling simulation  plasma spraying  path-by-path and layer-by-layer  thermal barrier coating  thermal stress
基金项目:安徽省高等学校自然科学基金重点研究项目(2022AH050297)
作者单位
谢玲玲 安徽工业大学 冶金工程学院,安徽 马鞍山 243032 
方天宇 安徽工业大学 冶金工程学院,安徽 马鞍山 243032 
牛亚然 中国科学院 上海硅酸盐研究所特种无机涂层重点实验室,上海 200050 
洪督 中国科学院 上海硅酸盐研究所特种无机涂层重点实验室,上海 200050 
王子昱 安徽工业大学 机械工程学院,安徽 马鞍山 243032 
祝世超 常州工学院 航空制造工程系,江苏 常州 213002 
郑学斌 中国科学院 上海硅酸盐研究所特种无机涂层重点实验室,上海 200050 
AuthorInstitution
XIE Lingling School of Metallurgical Engineering, Anhui University of Technology, Anhui Maanshan 243032, China 
FANG Tianyu School of Metallurgical Engineering, Anhui University of Technology, Anhui Maanshan 243032, China 
NIU Yaran Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 
HONG Du Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 
WANG Ziyu School of Mechanical Engineering, Anhui University of Technology, Anhui Maanshan 243032, China 
ZHU Shichao College of Aeronautics and Mechanical Engineering, Changzhou Institute of Technology, Jiangsu Changzhou 213002, China 
ZHENG Xuebin Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 揭示TiAl合金表面等离子喷涂热障涂层沉积过程热应力的分布和演化规律,降低因残余应力过大导致涂层开裂失效的可能性,为制备新型TiAlCrY/YSZ TBCs应力状态精确可控涂层提供指导。方法 基于有限元模拟,针对TiAl合金表面等离子喷涂TiAlCrY/YSZ新型热障涂层的沉积过程,采用逐道逐层喷涂的方式进行三维热力耦合模拟,获得较好的热应力分布和演变规律。结果 在TiAlCrY过渡层和YSZ涂层的喷涂过程中,对于xy方向的应力,熔道的大部分区域均为压应力,但在熔道起始位置存在较小的拉应力,在熔道末尾位置存在很大的压应力;对于z向应力,熔道表面为拉-压应力交替,在熔道末尾存在较高的拉应力。由于材料的属性存在明显差异,因此各层材料的界面处存在应力突变现象。在喷涂过程中,由于层与层、道与道之间存在相互的热影响,因此沉积过程中存在多次热应力循环过程,尤其是沉积过程中出现的拉应力和压应力峰值均明显高于冷却至室温后的残余应力。结论 不同材料的界面处是应力发生突变的区域,且在沉积过程中多道、多次热应力循环会产生拉应力和压应力峰值,这更易导致涂层发生开裂。
英文摘要:
      TiAl alloy is considered as a potential alternative high temperature structural material in the aerospace field due to its low density, high specific strength, modulus and excellent high temperature durability and creep resistance. However, when TiAl alloy is in service above 850 ℃, its surface will produce loose structure oxidation products with no protective effect, and the oxidation resistance decreases sharply at high temperature. Therefore, the development of new Thermal Barrier Coatings (TBCs) has become the key to the application of TiAl alloy in the hot end parts of aeroengines. TBCs should be as close as possible to the properties of the substrate material, so as to ensure the collaborative deformation ability of TBCs and the substrate, and it is not easy to cause material cracking due to large deformation differences. TiAlCrY and TiAl alloy have similar composition, small difference in thermal expansion coefficient, good compatibility, and good high-temperature oxidation resistance, so it can not only reduce the mismatch of thermal physical parameters between the coating and TiAl alloy substrate, but also avoid the effect of element diffusion and can be used as a promising transition layer material for TiAl alloy. Therefore, atmospheric plasma spraying technology is used to prepare a thermal barrier coating system on the surface of TiAl alloy, with TiAlCrY as the transition layer and Yttrium oxide partially stabilized zirconia (7%-8%) Y2O3-ZrO2 (7-8YSZ) and other ceramic materials with low thermal conductivity as the spraying layer, which can improve the high temperature resistance and oxidation resistance of the alloy. The residual stress of the multilayer coating system is affected by the initial stress state of the substrate during preparation and the stress state after spraying and cooling, which is the key to obtain high performance and long life TBCs. Therefore, the deposition process of TiAlCrY/YSZ thermal barrier coating by plasma spraying on the surface of TiAl alloy is simulated through spraying by the way of the path-by-path and layer-by-layer based on finite element simulation with three-dimensional thermodynamic coupling. Most areas of the melted layer have compressive stress in x and y directions, but there is a small tensile stress at the beginning of the melted layer and a high compressive stress at the end of the melted layer in the process of spraying the TiAlCrY transition layer and YSZ thermal barrier coating, and when the z-direction stress is involved, the surface of the melted layer alternates between tensile stress and compressive stress, but there is a high tensile stress at the end of the melted layer. Due to the obvious difference in material properties, there is a sudden stress phenomenon at the interface of each layer of materials, especially the peak tensile and compressive stress at the interface of the transition layer and the spray layer. During the spraying process, due to the mutual thermal effect between layers and channels, there are multiple thermal stress cycles in the deposition process. In particular, the peak tensile and compressive stresses in the deposition process are significantly higher than the residual stress at cooling to room temperature. Therefore, the study results reveal the distribution and evolution of thermal stress during the deposition of the plasma sprayed thermal barrier coating on the surface of TiAl alloy, and reduce the possibility of coating cracking failure due to excessive residual stress, which provides guidance for the preparation of the new TiAlCrY/YSZ TBCs with accurately controllable stress state.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第30170574位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号