尚一博,伏宇,张璇,周留成,何云,沈庆阳,王晨,易敏,何卫锋,张学宝,高伟思.激光冲击强化TC17钛合金叶片高周疲劳强度评估模型[J].表面技术,2025,54(11):184-194. SHANG Yibo,FU Yu,ZHANG Xuan,ZHOU Liucheng,HE Yun,SHEN Qingyang,WANG Chen,YI Min,HE Weifeng,ZHANG Xuebao,GAO Weisi.#$NPHigh Cycle Fatigue Strength Evaluation Model for TC17 Titanium Alloy Blades Strengthened by Laser Shock Peening[J].Surface Technology,2025,54(11):184-194 |
激光冲击强化TC17钛合金叶片高周疲劳强度评估模型 |
#$NPHigh Cycle Fatigue Strength Evaluation Model for TC17 Titanium Alloy Blades Strengthened by Laser Shock Peening |
投稿时间:2025-03-11 修订日期:2025-04-27 |
DOI:10.16490/j.cnki.issn.1001-3660.2025.11.015 |
中文关键词: 钛合金叶片 激光冲击强化 高周疲劳 临界距离理论 内部疲劳极限理论 强度评估 |
英文关键词:titanium alloy blades laser shock peening high cycle fatigue theory of critical distances internal fatigue limit theory strength evaluation |
基金项目:国家科技重大专项(J2019-IV-0014-0082);国家自然科学基金青年项目(52405240);国家自然科学基金重点项目(92360309);国家重点研发计划项目(2024YFB4609000);国家纵向科研项目(XXXX2023XXXC006);陕西省自然科学基础研究计划项目(2023-JC-QN-0044,2023-JC-QN-0094,2024JCYBQN-0065) |
作者 | 单位 |
尚一博 | 空军工程大学 基础部,西安 710051;空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038 |
伏宇 | 中国燃气涡轮研究院,成都 610500 |
张璇 | 南京航空航天大学 航空学院,南京 210016 |
周留成 | 空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038;空军工程大学 航空工程学院,西安 710038;西安交通大学 机械工程学院,西安 710049 |
何云 | 中国燃气涡轮研究院,成都 610500 |
沈庆阳 | 中国燃气涡轮研究院,成都 610500 |
王晨 | 空军工程大学 基础部,西安 710051;空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038 |
易敏 | 南京航空航天大学 航空学院,南京 210016 |
何卫锋 | 空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038;空军工程大学 航空工程学院,西安 710038;西安交通大学 机械工程学院,西安 710049 |
张学宝 | 中国燃气涡轮研究院,成都 610500 |
高伟思 | 中国燃气涡轮研究院,成都 610500 |
|
Author | Institution |
SHANG Yibo | Basic Department, Air Force Engineering University, Xi'an 710051, China;National Key Laboratory of Aerospace Power Systems and Plasma Technology, Air Force Engineering University, Xi'an 710038, China |
FU Yu | China Gas Turbine Research Institute, Chengdu 610500, China |
ZHANG Xuan | School of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
ZHOU Liucheng | National Key Laboratory of Aerospace Power Systems and Plasma Technology, Air Force Engineering University, Xi'an 710038, China;School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China;School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
HE Yun | China Gas Turbine Research Institute, Chengdu 610500, China |
SHEN Qingyang | China Gas Turbine Research Institute, Chengdu 610500, China |
WANG Chen | Basic Department, Air Force Engineering University, Xi'an 710051, China;National Key Laboratory of Aerospace Power Systems and Plasma Technology, Air Force Engineering University, Xi'an 710038, China |
YI Min | School of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
HE Weifeng | National Key Laboratory of Aerospace Power Systems and Plasma Technology, Air Force Engineering University, Xi'an 710038, China;School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China;School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
ZHANG Xuebao | China Gas Turbine Research Institute, Chengdu 610500, China |
GAO Weisi | China Gas Turbine Research Institute, Chengdu 610500, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 预测和评估激光冲击强化TC17钛合金叶片的高周疲劳强度。方法 测试表面激光强化后的硬度和残余应力分布,开展拉伸和振动疲劳试验,分析硬度和残余应力演化规律,基于内部疲劳极限理论和临界距离理论,建立考虑表面完整性的强化叶片疲劳极限预测模型,结合有限元模态数值仿真,对表面强化后的钛合金叶片高周疲劳强度进行预测。结果 板状拉伸试样的疲劳试验结果表明,表面强化后钛合金材料的疲劳极限提升13.41%。模拟叶片试样的弯曲振动疲劳试验结果表明,表面强化后叶片的疲劳极限提升7.77%。基于内部疲劳极限理论,结合硬度和残余应力试验结果,确定危险点位于距表面80 μm处。针对危险点处,基于临界距离理论开展叶片疲劳极限预测,模型预测精度误差不超过15%。结论 表面激光强化可以有效提升TC17钛合金材料和叶片的高周疲劳极限。本文建立的表面强化叶片疲劳极限预测模型,能够精确预测具有复杂曲面结构的表面强化叶片的高周疲劳极限,可以为喷丸强化、激光强化、激光冲击+喷丸复合强化等多种强化方式的叶片疲劳性能评估提供参考。 |
英文摘要: |
Fan and compressor blades are the critical components of aircraft engines. The surface strengthening treatment process is widely used in blade manufacturing. It is important to predict the high cycle fatigue strength of blades after surface strengthening for blade manufacturing. However, the irregular geometric shape of the blades and the complex surface state and microstructure such as hardness and residual stress after surface strengthening pose challenges for the fatigue performance evaluation of surface strengthened blades. This work aims to study the fatigue strength evaluation of surface laser shock peened TC17 titanium alloy blades. Firstly, the microhardness and residual stress distribution of the blade surface after strengthening were tested. Then, surface strengthened blade fatigue tests were carried out to test the fatigue strength and analyze the evolution law of microhardness and residual stress. Based on the internal fatigue limit theory and critical distance theory, a surface strengthened blade fatigue limit prediction model considering surface integrity was established. Combined with finite element modal numerical simulation, the high cycle fatigue strength of surface laser shock peened titanium alloy blades was predicted, which provided theoretical guidance for the fatigue performance evaluation of surface strengthened blades. The surface laser shock peening could improve the high cycle fatigue limit of TC17 titanium alloy material and simulated blades. The tensile fatigue test results of the plate-like tensile specimen showed that the fatigue limit increased by 13.41% after surface strengthening. The fatigue test results of simulated blade bending vibration showed that the fatigue limit increased by 7.77% after surface strengthening. The microhardness results showed that the microhardness of TC17 substrate before laser shock peening was 353HV0.2. After laser shock peening, the surface microhardness of TC17 increased to 394.5HV0.2, and the depth of the affected layer was 800 μm. After fatigue loading, the surface microhardness decreased to 374.8HV0.2, and the depth of the affected layer also decreased from 800 μm to 100 μm. The residual stress results showed that the affected depth of laser shock peening on the residual stress of TC17 titanium alloy was about 300 μm. After cyclic loading, the residual stress on the surface of specimen relaxed and the residual compressive stress layer became shallower. At a depth of about 100 μm, the residual stress value was about –70 MPa, which was equivalent to the initial residual stress value of the substrate, and the influence depth after relaxation was about 120 μm. Based on the internal fatigue limit theory and critical distance theory, a surface strengthened blade fatigue limit prediction model considering surface integrity was established with 7 steps, with a prediction accuracy error of no more than 15%. This study can provide theoretical guidance for evaluating the fatigue performance of surface strengthened components with complex geometric structures and various strengthening methods, such as shot peening, laser shock peening, laser shock peening and shot peening compound strengthening. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|