张培荣,张霞,胡顺睿,苏国胜,杜劲,夏岩,刘战强.界面结构对薄壁件表面异质熔覆层铣削稳定性的影响规律[J].表面技术,2025,54(11):159-172. ZHANG Peirong,ZHANG Xia,HU Shunrui,SU Guosheng,DU Jin,XIA Yan,LIU Zhanqiang.Effect of Interfacial Structure on the Milling Stability of Heterogeneous Cladding Layer on Thin-walled Parts[J].Surface Technology,2025,54(11):159-172 |
界面结构对薄壁件表面异质熔覆层铣削稳定性的影响规律 |
Effect of Interfacial Structure on the Milling Stability of Heterogeneous Cladding Layer on Thin-walled Parts |
投稿时间:2024-11-15 修订日期:2025-02-13 |
DOI:10.16490/j.cnki.issn.1001-3660.2025.11.013 |
中文关键词: 激光熔覆 界面结构 应力应变 铣削稳定性 表面质量 |
英文关键词:laser cladding interfacial structure stress-strain milling stability surface quality |
基金项目:国家自然科学基金(52105455);山东省自然科学基金(ZR2024QE106);山东省重点研发计划(2023TSGC0172);齐鲁工业大学(山东省科学院)科教产融合试点工程基础研究类项目(2023PY021) |
作者 | 单位 |
张培荣 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
张霞 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
胡顺睿 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
苏国胜 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
杜劲 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
夏岩 | 齐鲁工业大学山东省科学院 机械工程学院 山东省数控机床功能部件关键技术重点实验室,济南 250353;山东省机械设计研究院,济南 250031 |
刘战强 | 山东大学 机械工程学院,济南 250061 |
|
Author | Institution |
ZHANG Peirong | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
ZHANG Xia | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
HU Shunrui | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
SU Guosheng | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
DU Jin | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
XIA Yan | School of Mechanical Engineering,Shandong Key Laboratory of CNC Machine Tool Functional Components, Qilu University of Technology Shandong Academy of Sciences, Jinan 250353, China;Shandong Institute of Mechanical Design and Research, Jinan 250031, China |
LIU Zhanqiang | School of Mechanical Engineering, Shandong University, Jinan 250061, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 解决熔覆层-基体异质界面导致后续机械加工过程中容易产生加工振动的问题。方法 通过仿真研究界面结构对加工应力应变演化的影响,通过实验研究界面结构对铣削稳定性的影响,并对界面结构进行优化。通过模态分析、切削振动和粗糙度测试对铣削稳定性进行评价,利用稳定性叶瓣图对铣削稳定域进行预测。结果 通过增加界面结构,减小了界面应力差和应变增量。在矩形界面下,工件刚度的降低幅度和一阶固有频率最大,其次为等腰梯形、半圆形和三角形。刚度随着形状因子的增大呈先减小再增大的趋势,随着界面深度(间距)的增加而减小(增大)。当界面深度较浅(深)时,固有频率随着形状因子的增大而增大(减小),同时固有频率随着界面深度(间距)的增加而增大(减小)。对切削振动及粗糙度的改善作用从大到小依次为三角形、矩形、等腰梯形和半圆形。形状因子对振动加速度和表面粗糙度的影响最大,界面深度次之,界面间距的影响最小。当形状因子和界面间距越小,界面深度越大时,加工稳定性越强,表面粗糙度越低。优化界面结构为形状因子0.06、界面深度3 mm、界面间距0 mm,其铣削稳定域相较于直线界面增加了117%。结论 通过在基体表面预先加工界面结构,可以提高薄壁件表面异质熔覆层的后续铣削加工稳定性,从而提高加工质量。 |
英文摘要: |
In recent years, laser cladding has gradually expanded into the manufacturing and repair of complex and weakly rigid structural components. However, the heterogeneous interface between the cladding layer and the substrate can lead to machining vibrations when the laser cladding is used for surface repair of thin-walled parts, becoming a bottleneck in repairing of thin-walled parts by laser cladding method. The work aims to study the effect of interfacial structures on the stress-strain evolution through finite element simulation and the milling stability of heterogeneous cladding layer on the surface of thin-walled parts based on a single factor experiment, and further optimize the interfacial structure parameters by Taguchi experimental design. The milling stability under different interfacial structures and parameters is evaluated through modal analysis, cutting vibration and surface roughness testing. In addition, the milling stability domain of the laser cladded workpiece with straight and optimized interface structures is evaluated by stability lobe diagrams. The results indicate that the introduction of longitudinal interfaces due to the interfacial structures reduces the stress energy dissipation passing through the interface, thus decreasing the interfacial stress difference. The natural frequency and stiffness of the cladding layer workpiece show an opposite trend of change with the increasing interfacial structures. On the one hand, the reduction of stiffness is the greatest when a rectangular interface is set, followed by isosceles trapezoids, semicircles, and triangles. The stiffness decreases first and then increases with the increase of shape factor, decreases with the increase of interfacial depth, and increases with the increase of interfacial spacing. On the other hand, the first-order natural frequency of the workpiece with the rectangular interface is the highest, followed by isosceles trapezoidal, triangular, and semicircle structures. The natural frequency increases with the increase of shape factor when the interfacial depth is small, and decreases with the increase of shape factor when the interfacial depth is large. Meanwhile, the natural frequency increases with the increase of interfacial depth and decreases with the increase of interfacial spacing. The milling vibration acceleration decreases by 32% and the milled surface roughness also decreases by 23.9% when a triangular interface is used instead of a straight interface. As a result, the cutting vibration and surface roughness during cutting can be effectively reduced with the increasing interface structures. The improvement effects on cutting vibration and surface roughness are in descending order as follows:triangle, rectangle, isosceles trapezoid, and semicircle. The milled surface roughness decreases by 23.9% when the triangular interface is increased compared to the straight interface. In detail, the shape factor of the interfacial structure has the greatest impact on the vibration acceleration and surface roughness of the workpiece, followed by the interfacial depth, and the interfacial spacing has the smallest impact. When the shape factor is smaller, the interfacial depth is larger, and the interfacial spacing is smaller, the vibration acceleration of the workpiece will be smaller, and the stability of the workpiece will be stronger, and further the surface roughness of the workpiece after milling will be reduced. The optimized interfacial structure has a shape factor of 0.06, interfacial depth of 3 mm, and spacing of 0 mm. The milling stability lobe diagram shows that the stability domain of the optimized interfacial structure workpiece has increased by 117% when a linear interface is compared to a straight interface. The results confirm that pre-processing the interfacial structure on the substrate can improve the milling stability of the heterogeneous cladding layer on the surface of thin-walled parts to a certain extent, thereby improving the machining quality. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|