王文静,闫伟,吴波文,崔晓璐,潘家保,胡焰,王雪飘,王力红,夏仕敏.高速铁路钢轨波磨激励下轮轨瞬态响应分析[J].表面技术,2025,54(11):50-62.
WANG Wenjing,YAN Wei,WU Bowen,CUI Xiaolu,PAN Jiabao,HU Yan,WANG Xuepiao,WANG Lihong,XIA Shimin.Analysis of Wheel/Rail Transient Response under Rail Corrugation Excitation of High Speed Railway[J].Surface Technology,2025,54(11):50-62
高速铁路钢轨波磨激励下轮轨瞬态响应分析
Analysis of Wheel/Rail Transient Response under Rail Corrugation Excitation of High Speed Railway
投稿时间:2024-10-17  修订日期:2025-02-16
DOI:10.16490/j.cnki.issn.1001-3660.2025.11.004
中文关键词:  高速铁路  钢轨波磨  瞬态滚动接触  拉格朗日/欧拉方法  显式动力学分析
英文关键词:high speed railway  rail corrugation  transient rolling contact  Lagrangian/Eulerian description  explicit dynamic analysis
基金项目:国家自然科学基金(52405243,52375227,52405445);轨道交通基础设施性能监测与保障国家重点实验室开放课题(HJGZ2023109);芜湖市重点研发与成果转化项目(2023yf055)
作者单位
王文静 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000 
闫伟 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000 
吴波文 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000 
崔晓璐 重庆交通大学 机电与车辆工程学院,重庆 400074 
潘家保 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000 
胡焰 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000 
王雪飘 芜湖中铁科吉富轨道有限公司,安徽 芜湖 241000 
王力红 芜湖中铁科吉富轨道有限公司,安徽 芜湖 241000 
夏仕敏 芜湖中铁科吉富轨道有限公司,安徽 芜湖 241000 
AuthorInstitution
WANG Wenjing School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China 
YAN Wei School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China 
WU Bowen School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China 
CUI Xiaolu School of Mechanotronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China 
PAN Jiabao School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China 
HU Yan School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China 
WANG Xuepiao Wuhu China Railway Cogifer Track Co., Ltd, Anhui Wuhu 241000, China 
WANG Lihong Wuhu China Railway Cogifer Track Co., Ltd, Anhui Wuhu 241000, China 
XIA Shimin Wuhu China Railway Cogifer Track Co., Ltd, Anhui Wuhu 241000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究高速铁路波磨激励下的轮轨瞬态响应。方法 建立了高速铁路轮轨系统瞬态滚动接触有限元模型,提出了一个改进的轮轨瞬态滚动接触模拟方案,改进的方案采用混合拉格朗日/欧拉方法在静态分析中为轮对施加转速,获得稳态滚动接触解,可以避免传统方案在动态分析中施加转速引起的强烈初始扰动。基于该模型研究了高速铁路钢轨波磨激励下轮轨垂向力、纵向力以及接触斑内应力的变化特征,并讨论了波磨波长和波深对轮轨瞬态响应的影响。结果 当速度提高到500 km/h时,轮轨接触解稳定所需的动态松弛区长度仅为1 250 mm。轮对以300 km/h的速度滚过65 mm的波磨时,轮轨垂向力和纵向力振动频率相同,但相位存在差异。在轮对通过波磨波峰和波谷之间的位置时,接触斑中心向靠近波磨几何一侧转移。波长为65 mm的波磨深度增长到105 µm时,轮重减载率为0.65。波磨波长为65 mm和125 mm时,轮轨垂向力和纵向力均呈现单波长特征。结论 改进的模拟方案在较短的动态松弛区内即可获得稳定的接触解;波磨会激起强烈的轮轨动作用力;波磨深度越大,激发的轮轨动作用力越强烈。垂向力和纵向力峰谷值与波磨深度成线性关系。波磨波长与轮轨力振动幅值不存在简单的线性关系。
英文摘要:
      Rail corrugation is the undulating wear on the surface of the rail, which has a fixed wavelength at a certain speed and will bring vibration and noise problems to the train-track system, resulting in the failure and shedding of system components and seriously affecting the safety and comfort of train operation. At present, the most effective measure to control rail corrugation is rail grinding. Determining the grinding limit of rail corrugation is the key to formulating an economical grinding strategy and implementing a grinding plan. Determining the grinding limit requires a systematic and in-depth study of the transient response of the wheel-rail system under rail corrugation excitation. The dynamic response of vehicle-track system under rail corrugation excitation is mainly studied by two methods of vehicle-track system dynamics model based on multi-body system dynamics theory and wheel-rail transient rolling contact model based on finite element. However, most of the vehicle-track system dynamics models based on the multi-body system dynamics theory assume that the wheel-rail contact is steady-state, which cannot consider the effect of the real wheel-rail contact geometry, and the wheel-rail contact is unsteady under the rail corrugation excitation. The traditional transient rolling contact model of the wheel-rail system based on finite element has a large initial disturbance and a long dynamic "relaxation zone", which further increases the element law of the model. A transient rolling contact model of the wheel-rail system of high-speed railway was established. An improved simulation scheme for the wheel-rail transient rolling contact was proposed, in which the rotation speed of the wheelset was applied in a static analysis based on mixed Lagrangian/Eulerian description to obtain the steady-state contact solutions. The improved method could avoid the initial disturbance caused by applying the rotation speed to the wheelset in a dynamic analysis. Based on the improved method, the variation characteristics of the wheel/rail vertical force, the longitudinal force and the stresses in the contact patch under the excitation of rail corrugation were studied. The effect of the wavelength and depth of rail corrugation on the transient response of the wheel-rail system was discussed. The improved method could provide a stable contact solution at the expense of a shorter dynamic relaxation zone. When the speed increased to 500 km/h, the required length of the dynamic relaxation zone was only 1 250 mm. Corrugation aroused strong wheel-rail dynamic interaction and the vertical and longitudinal wheel/rail force vibrated at the same frequency but with a phase difference. When the wheelset passed through the position between the crest and the trough of the corrugation, the center of the contact patch shifted to side close to the corrugation geometry. The deeper the corrugation, the stronger the dynamic wheel/rail forces. The peak and valley values of the vertical and longitudinal forces have a linear relationship with the corrugation depth. When depth of the corrugation with a wavelength of 65 mm increases to 105 µm, the wheel load reduction is 0.65. There is no simple linear relationship between the wavelength of the corrugation and the amplitude of the dynamic wheel-rail forces. Under the excitation of the corrugation with the wavelength of 65 mm and 125 mm, the vertical and longitudinal wheel-rail forces show the characteristics of single wavelength.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第30170306位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号