杨昭君,李雨桐,李明,魏政,孙莹,Babaytsev Arseny,Fedotenkov Gregory,Mednikov Aleksei,李玉龙,沙明工.高动态雨滴冲击飞机蒙皮涂层的抗雨蚀影响因素与损伤机理[J].表面技术,2025,54(10):82-95.
YANG Zhaojun,LI Yutong,LI Ming,WEI Zheng,SUN Ying,Babaytsev,Arseny,Fedotenkov,Gregory,Mednikov,Aleksei,LI Yulong,SHA Minggong.Affecting Factors of Rain Erosion Resistance and Damage Mechanisms of the Aircraft Skin Coating Impacted by High Dynamic Raindrops[J].Surface Technology,2025,54(10):82-95
高动态雨滴冲击飞机蒙皮涂层的抗雨蚀影响因素与损伤机理
Affecting Factors of Rain Erosion Resistance and Damage Mechanisms of the Aircraft Skin Coating Impacted by High Dynamic Raindrops
投稿时间:2025-01-14  修订日期:2025-04-01
DOI:10.16490/j.cnki.issn.1001-3660.2025.10.006
中文关键词:  高动态  雨滴冲击损伤  水射流  失效分析  复合材料  涂层
英文关键词:high dynamic  raindrop impact damage  water jet  failure analysis  composite material  coating
基金项目:国家自然科学基金资助项目(12261131505,U2241274);俄罗斯科学基金(23-49-00133);航空科学基金项目(20240002053002);陕西省自然科学基础研究计划资助项目(2025JC-YBMS-005);陕西省重点研发计划项目(2024GX-YBXM-037);太仓市基础研究计划(TC2024JC10)
作者单位
杨昭君 中国航空综合技术研究所,北京100028;航空综合环境航空科技重点实验室,北京100028 
李雨桐 西北工业大学 民航学院,西安 710072 
李明 中国航空综合技术研究所,北京100028;航空综合环境航空科技重点实验室,北京100028 
魏政 中航工业集团公司济南特种结构研究所,济南 250104 
孙莹 莫斯科航空学院国立研究大学,莫斯科 125993 俄罗斯 
Babaytsev Arseny 莫斯科航空学院国立研究大学,莫斯科 125993 俄罗斯 
Fedotenkov Gregory 莫斯科航空学院国立研究大学,莫斯科 125993 俄罗斯 
Mednikov Aleksei 国立研究大学莫斯科动能学院,莫斯科111250 俄罗斯 
李玉龙 西北工业大学 民航学院,西安 710072;西北工业大学太仓长三角研究院,江苏 苏州 215400 
沙明工 西北工业大学 民航学院,西安 710072;西北工业大学太仓长三角研究院,江苏 苏州 215400 
AuthorInstitution
YANG Zhaojun China Aviation Comprehensive Technology Research Institute, Beijing 100028, China;Aviation Key Laboratory of Science and Technology on Aero Combined Environment, Beijing 100028, China 
LI Yutong School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China 
LI Ming China Aviation Comprehensive Technology Research Institute, Beijing 100028, China;Aviation Key Laboratory of Science and Technology on Aero Combined Environment, Beijing 100028, China 
WEI Zheng The Research Institute for Special Structures of Aeronautical Composite AVIC, Ji'nan 250104, China 
SUN Ying Moscow Aviation Institute National Research University, Moscow 125993, Russia 
Babaytsev,Arseny Moscow Aviation Institute National Research University, Moscow 125993, Russia 
Fedotenkov,Gregory Moscow Aviation Institute National Research University, Moscow 125993, Russia 
Mednikov,Aleksei Moscow Power Engineering Institute, National Research University, Moscow 111250, Russia 
LI Yulong School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China;Yangtze River Delta Research Institute of NPU, Tangcang, Jiangsu Suzhou 215400, China 
SHA Minggong School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China;Yangtze River Delta Research Institute of NPU, Tangcang, Jiangsu Suzhou 215400, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究飞机前缘蒙皮涂层材料高动态雨滴冲击损伤机理与影响因素,明晰雨蚀损伤的主要损伤模式与机制,为飞机抗雨蚀性能研究提供数据支持与理论基础。方法 基于一级10 mm口径轻气炮平台搭建单射流冲击试验装置,以T300碳纤维复合材料为基体,表面涂敷4种规格的聚氨酯涂层,研究了涂层力学性能与冲击速度、角度等因素对涂层雨蚀损伤程度的影响规律,建立了水射流冲击复合材料涂层结构的有限元模型,进一步揭示了涂层材料的雨蚀损伤行为与损伤机理。结果 高速射流冲击涂层时,仿真与试验结果基本吻合,验证了数值仿真模型方法的合理性;由于水锤压力的作用,涂层试样的雨蚀典型损伤形貌为环形损伤包围中央未损伤区;随着冲击速度的增加,应力水平逐渐增大,在接触瞬间会导致涂层内部产生裂纹分层,甚至表面分离翘起和剥离脱落。而随着冲击角度的增加,垂直方向上速度分量减小,在水平方向上侧向射流沿冲击投影正方向与反方向的速度存在明显差异,且仿真结果中路径应力水平也不相同,最终导致损伤形貌呈现明显的不对称性。结论 水射流的冲击速度和冲击角度是影响涂层雨蚀损伤程度的主要条件因素;水锤压力、应力波传播是涂层产生剥离与内部损伤的主要微观因素;水力渗透及侧向射流作用则是复合材料蒙皮涂层结构层间开裂的主要原因之一。
英文摘要:
      As a leading edge component, the aircraft fuselage skin can suffer severe damage to its surface coating structure due to the impact erosion of raindrops when the aircraft traverses through rainy conditions. With the increasing flight speed of aircraft, stricter requirements have been put forward for the rain erosion resistance of the fuselage coating. To clarify the mechanisms and affecting factors of rain erosion damage on the leading edge skin coating of aircraft and identify the damage criteria for rain erosion impacts, a single-jet impact test setup has been established based on a first-order light gas gun platform. With T300 carbon fiber composite material as the substrate, three different types and thicknesses of polyurethane coatings are applied to the surface. The effect of coating mechanical properties, impact velocity, angle, and other factors on the degree of rain erosion damage to the coatings is examined. A finite element model of the water jet impacting the composite coating structure during the impact process is developed based on Abaqus finite element simulation software to further reveal the rain erosion behavior and damage mechanisms of the coating material. The results indicate that when the high-speed jet impacts the coating, the simulated damage outcomes are generally consistent with the experimental results, showing uneven damage distribution at different impact angles, with deformation and delamination of the coating being the primary damage modes. This validates the rationality of the numerical simulation model method. The typical morphology of rain erosion damage is characterized by a circular damage area surrounding the central undamaged area. Under more severe impact conditions, the main damage modes are circular damage after peeling of topcoat and primer. It can be seen that cracks are generated due to the impact, and the edges of the cracks are lifted and broken, mainly in the erosion pit at the impact center, accompanied by the uplift of the surrounding surface layer, resulting in internal delamination damage. As impact conditions intensify, the surface coating cracks and peels off, resulting in circular detachment. The impact velocity and angle of the water jet are the primary factors affecting the degree of rain erosion damage to the coating. By combining simulation methods, the stress propagation patterns during the impact process are obtained. An increase in impact velocity directly leads to an increase in stress levels, causing surface coating detachment and internal crack delamination under stress during the impact instant, with the surface coating separating and lifting up. An increase in the impact angle reduces the velocity component in the vertical direction. In the horizontal direction, due to the presence of the impact angle, there is a significant difference in velocity between the lateral jet along the positive and negative directions of the impact projection, leading to differences in path stress levels in the simulation results and ultimately causing the damage morphology to exhibit a clear asymmetric distribution. Water hammer pressure and stress wave propagation are the main factors causing coating detachment and internal damage, while hydraulic infiltration and lateral jet effects are among the reasons for interlayer cracking in the composite skin coating structure.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第30357726位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号