包建勤,虎学梅,乔俊强.分级结构CuS电极材料的制备及其超级电容性能[J].表面技术,2025,54(8):210-218.
BAO Jianqin,HU Xuemei,QIAO Junqiang.Preparation and Supercapacitor Performance of Hierarchical CuS Electrode Material[J].Surface Technology,2025,54(8):210-218
分级结构CuS电极材料的制备及其超级电容性能
Preparation and Supercapacitor Performance of Hierarchical CuS Electrode Material
投稿时间:2024-05-20  修订日期:2024-07-10
DOI:10.16490/j.cnki.issn.1001-3660.2025.08.019
中文关键词:  硫化铜  分级结构  超级电容性能  表面活性剂  水热反应
英文关键词:CuS  hierarchical structure  supercapacitor performance  surfactant  hydrothermal reaction
基金项目:甘肃省重点研发计划项目(22YF7GA064)
作者单位
包建勤 甘肃自然能源研究所,兰州 730046;甘肃省太阳能利用重点实验室,兰州 730046 
虎学梅 甘肃自然能源研究所,兰州 730046 
乔俊强 甘肃自然能源研究所,兰州 730046;甘肃省太阳能利用重点实验室,兰州 730046 
AuthorInstitution
BAO Jianqin Gansu Natural Energy Research Institute, Lanzhou 730046, China;Key Laboratory of Solar Energy Utilization, Gansu Province, Lanzhou 730046, China 
HU Xuemei Gansu Natural Energy Research Institute, Lanzhou 730046, China 
QIAO Junqiang Gansu Natural Energy Research Institute, Lanzhou 730046, China;Key Laboratory of Solar Energy Utilization, Gansu Province, Lanzhou 730046, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 CuS用作超级电容器电极材料的电化学活性和循环稳定性亟须提升,旨在通过构建分级结构提升CuS电化学活性面积,进而提升其超级电容性能。方法 采用水热法制备CuS纳米材料,通过在水热反应前驱体中分别添加表面活性剂PEG400、OP10实现材料微观形貌和比表面积的调控,采用XRD、XPS、SEM、TEM、N2吸附-脱附测试、差示扫描量热法对制备产物的晶相、组成、微观形貌、比表面积和热稳定性进行了系统表征,通过循环伏安测试、恒电流充放电等电化学方法考察了CuS材料的超级电容性能及循环稳定性。结果 不同表面活性剂的加入显著影响了CuS材料的微观形貌、比表面积和超级电容性能。相比未添加表面活性剂和添加OP10,添加PEG400表面活性剂制备的CuS纳米材料具有更高的比表面积和独特的介孔分级结构,在1 A/g电流密度条件下,比电容可达785.5 F/g,且在8 A/g电流密度条件下循环2 000次后比电容仍可保持在初始值的77.8%,表现出更好的超级电容性能。结论 CuS材料的微观形貌、比表面积对其超级电容性能有着较为显著的影响,较高的比表面积有利于增加与电解液的接触面积,特定的微观形貌可促进电解液中离子的输运和扩散,进而提升CuS材料的超级电容性能。
英文摘要:
      To develop high-performance supercapacitors, the preparation of electrode materials with high capacitance, simple-operated and good chemical stability is highly desired. As one of widely used supercapacitor electrode materials, copper sulfide (CuS) is subject to electrochemical activity and cycling stability. The construction of three-dimensional nanostructures with hierarchical structures can increase the contact area between the electrode materials and the electrolyte, change the reaction kinetics occurring on the surface of the electrode materials, and thus improve the electrochemical performance. The hydrothermal method is a simple and convenient route to the tune structure and morphology of nanomaterials. Therefore, in this work, hierarchical CuS nanomaterials are prepared by a hydrothermal method, and the microstructure and specific surface area of the materials are regulated by adding surfactants PEG400 and OP-10 to the precursors of the hydrothermal reaction. The crystalline phases, compositions, microstructures, and specific surface areas of the prepared samples are systematically characterized by XRD, XPS, SEM, TEM, N2 adsorption-desorption and differential scanning calorimeter tests. The XRD and XPS results demonstrate that the addition of surfactant has little effect on the crystallinity and oxidation statements of elements in all three as-prepared samples. The SEM result shows that the addition of surfactant in hydrothermal process can changed the particle size and microstructure of as-prepared CuS samples. The N2 adsorption-desorption test confirms the alteration of as-prepared CuS samples after the addition of PEG400 and OP10, which is consistent with SEM results. The differential scanning calorimeter test shows that the addition of surfactants has little effect on the thermal stability of as-prepared CuS samples. The electrochemical performance and cycling stability of as-prepared CuS materials are investigated by electrochemical methods such as cyclic voltammetry test and constant-current charge/discharge. The result shows that the morphology and surface area of CuS nanomaterials affect its electrochemical performance. The CuS prepared with the addition of PEG400 exhibits unique microscopic hierarchical microstructure with surface area of 35.6 m2/g and better performance as supercapacitor electrode with the specific capacitance of 785.5 F/g, which is higher than that of the samples prepared with absence of surfactant and the addition of OP10. In addition, the CuS prepared with the addition of PEG400 remains 77.8% of initial specific capacitance after 2 000 cycles at the current density of 8 A/g. The better electrochemical performance of the CuS electrode material prepared by adding PEG400 can be attributed to its higher specific surface area, which is conducive to increasing the contact area with the electrolyte, and the unique microscopic morphology, which promotes ion transport and diffusion in the electrolyte. The larger specific surface area of the CuS electrode material prepared by adding PEG400 can increase the contact area between the electrolyte and the electrode material, which finally enhances the active sites for electrochemical reactions. The unique microscopic hierarchical structure of CuS with the addition of PEG400 formed by the loose stacking of nanosheets, is beneficial to shorten the ion diffusion path of the electrolyte and accelerate the ion transfer rate of the electrolyte, which enhance the charge transfer at the electrode/electrolyte interface. This work not only demonstrates the promising potential of the mesoporous CuS materials as supercapacitor electrodes,but also provides an available pathway to synthesize transition metal sulfide architecture with different particle size and morphology.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第28531280位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号