刘琨,王九思,杜康平,郭小满,张蕾,何文斌,都金光,明五一.GZO/8YSZ功能梯度热障涂层热冲击过程中裂纹的生长研究[J].表面技术,2025,54(7):189-202.
LIU Kun,WANG Jiusi,DU Kangping,GUO Xiaoman,ZHANG Lei,HE Wenbing,DU Jinguang,MING Wuyi.Crack Growth in GZO/8YSZ Functionally Graded Thermal Barrier Coatings during Thermal Shock[J].Surface Technology,2025,54(7):189-202
GZO/8YSZ功能梯度热障涂层热冲击过程中裂纹的生长研究
Crack Growth in GZO/8YSZ Functionally Graded Thermal Barrier Coatings during Thermal Shock
投稿时间:2024-08-07  修订日期:2024-12-02
DOI:10.16490/j.cnki.issn.1001-3660.2025.07.016
中文关键词:  功能梯度热障涂层  扩展有限元法  响应面方法  纵向裂纹  横向裂纹
英文关键词:functionally graded thermal barrier coatings  extended finite element method  response surface methodology  vertical crack  horizontal crack
基金项目:国家自然科学基金(U2004169);河南省科技攻关项目(242102230036);河南省重大科技专项(241100220100)
作者单位
刘琨 郑州轻工业大学 河南省机械装备智能制造重点实验室,郑州 450000 ;郑州轻工业大学 机电工程学院,郑州 450000 
王九思 郑州轻工业大学 河南省机械装备智能制造重点实验室,郑州 450000 ;郑州轻工业大学 机电工程学院,郑州 450000 
杜康平 郑州轻工业大学 机电工程学院,郑州 450000 
郭小满 多伦多大学 机械与工业工程学院,多伦多 M5S2E8 
张蕾 太原科技大学 材料科学与工程学院,太原 030024 
何文斌 郑州轻工业大学 河南省机械装备智能制造重点实验室,郑州 450000 ;郑州轻工业大学 机电工程学院,郑州 450000 
都金光 郑州轻工业大学 河南省机械装备智能制造重点实验室,郑州 450000 ;郑州轻工业大学 机电工程学院,郑州 450000 
明五一 郑州轻工业大学 河南省机械装备智能制造重点实验室,郑州 450000 
AuthorInstitution
LIU Kun Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou 450000, China;School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
WANG Jiusi Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou 450000, China;School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
DU Kangping School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
GUO Xiaoman School of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S2E8, Canada 
ZHANG Lei School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 
HE Wenbing Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou 450000, China;School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
DU Jinguang Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou 450000, China;School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
MING Wuyi Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou 450000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究功能梯度热障涂层(FG-TBCs)的裂纹生长机制。方法 通过用户定义材料子程序,建立梯度热障涂层结构模型,并基于响应面优化的扩展有限元法(XFEM)分析TGO/TC界面幅值、热生长氧化物(TGO)厚度和纵向裂纹倾角对裂纹扩展的影响。结果 在忽略TGO层初始应力的条件下,TGO厚度与TGO/TC界面裂纹扩展长度成反比;当TGO厚度从3 μm增至7 μm时,径向应力下降超过300 MPa,裂纹扩展长度和损伤程度显著减小。TGO/TC界面幅值是影响裂纹扩展最关键的因素,其次为TGO厚度,纵向裂纹倾角的影响最小。裂纹扩展与界面幅值呈先减后增的抛物线关系,在界面幅值约为13.6 μm时,对裂纹扩展的影响最小。裂纹扩展主要发生在首次热冲击的加热阶段,此时驱动力主要来源于显著温差引起的热应力,在后续热循环中裂纹扩展和损伤依赖于应力的累积效应。结论 所建立的梯度结构建模方法为更准确分析FG-TBCs内部应力分布提供了新的选择,研究结果为长寿命热障涂层的制备提供了理论和实验支持。
英文摘要:
      In the pursuit of enhancing the performance and longevity of thermal barrier coatings (TBCs) in harsh operating environments, functionally graded thermal barrier coatings (FG-TBCs) have garnered significant attention as a promising alternative to traditional design. FG-TBCs exhibit a unique ability to mitigate the detrimental interfacial effects that often plague the integration of dissimilar materials, achieving a harmonious blend of thermophysical properties across their compositional gradient. This integration not only alleviates thermal stresses, but also significantly improves the overall durability and service life of the coating system. The fundamental difference in the layer-by-layer composition of FG-TBCs leads to distinct crack propagation and failure mechanisms that are markedly different from those observed in conventional TBCs. Therefore, a meticulous investigation into the crack propagation mechanisms within FG-TBCs is imperative for the development of high-performance coatings with enhanced reliability and longevity. The present study delves into the microstructural intricacies of an 8% YSZ/Gd2Zr2O7 gradient TBC, utilizing advanced computational modeling techniques to simulate its behavior under operational conditions. By incorporating the UMAT subroutine within a finite element analysis (FEA) framework, a sophisticated model that captures the thermally and mechanically graded material properties of the top coat (TC) layer across a wide range of temperatures is constructed. This model incorporates realistic features such as porosity and lamellar structures, ensuring a high degree of fidelity in simulating the coating's response to thermal and mechanical stimuli. The model comprises four distinct layers:substrate (SUB), bond coat (BC), thermally grown oxide (TGO) layer, and ceramic top coat (TC). Each layer is meticulously defined based on its material properties and geometric dimensions, ensuring that the simulation accurately reflects the coating's actual structure and composition. To investigate the crack propagation behavior at the TGO/TC interface, an advanced technique, the extended finite element method (XFEM) is employed to simulate the growth and evolution of pre-existing horizontal and vertical cracks within the complex microstructural environment of the coating. By incorporating the Box-Behnken Design (BBD) methodology, the influence of various stress components — including radial (S22), axial (S11), and shear (S12) stresses — on the crack propagation patterns is systematically analyzed. The findings reveal several intriguing insights into the crack propagation mechanisms within FG-TBCs. Firstly, it is observed that the propagation length of cracks at the TGO/TC interface inversely correlates with the thickness of the TGO layer. As the TGO layer thickens, the crack propagation length and associated damage severity decrease, indicating that a thicker TGO layer can provide better resistance to crack propagation. Furthermore, the TGO/TC interface amplitude is identified as the most critical factor influencing crack propagation length, followed by TGO thickness and crack inclination angle. An interesting trend emerges, where crack propagation initially decreases with increasing interface amplitude before reversing at a critical value of λ=13.6 μm. This finding suggests that there is optimal interface amplitude that minimizes crack propagation, providing valuable insights for the design and optimization of FG-TBCs. In terms of crack initiation and propagation, the simulations indicate that the primary driving force for crack growth during the initial heating phase of thermal shock is thermal stress arising from temperature gradients within the coating.As the coating undergoes subsequent thermal cycles, crack growth and damage accumulation become increasingly dependent on the cumulative effects of stress. This understanding of the crack propagation mechanisms within FG-TBCs has significant implications for the development of advanced coating systems with enhanced resistance to thermal fatigue and improved service life.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27675400位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号