冯玉坤,董会,张永杰,李鹏宇,张三齐,杨紫辰.激光功率对316L/Al2O3熔覆层耐磨耐蚀性能的影响[J].表面技术,2025,54(7):151-161.
FENG Yukun,DONG Hui,ZHANG Yongjie,LI Pengyu,ZHANG Sanqi,YANG Zichen.Effect of Laser Power on the Wear and Corrosion Resistance of 316L/Al2O3 Cladding Layers[J].Surface Technology,2025,54(7):151-161
激光功率对316L/Al2O3熔覆层耐磨耐蚀性能的影响
Effect of Laser Power on the Wear and Corrosion Resistance of 316L/Al2O3 Cladding Layers
投稿时间:2024-08-04  修订日期:2024-10-17
DOI:10.16490/j.cnki.issn.1001-3660.2025.07.013
中文关键词:  激光熔覆  316L/Al2O3熔覆层  激光功率  稀释率  耐磨耐蚀性能
英文关键词:laser cladding  316L/Al2O3 cladding layer  laser power  dilution rate  wear corrosion resistance
基金项目:国家自然科学基金(52474081);陕西省自然学科基金重点项目(2024CY-GJHX-39);西安市创新生态优化专项计划(24KGDW0039);西安石油大学研究生创新基金(YCS22213149)
作者单位
冯玉坤 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
董会 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
张永杰 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
李鹏宇 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
张三齐 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
杨紫辰 西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室,西安 710065 
AuthorInstitution
FENG Yukun School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
DONG Hui School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
ZHANG Yongjie School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
LI Pengyu School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
ZHANG Sanqi School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
YANG Zichen School of Material Science and Engineering,Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, Xi'an Shiyou University, Xi'an 710065, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 针对316L不锈钢激光熔覆层存在的耐磨性不足问题,基于激光功率参数及硬质相Al2O3颗粒共同优化熔覆层性能,制备同时具有低稀释率、高耐磨性及高耐腐蚀性的316L熔覆层,为轨道交通、石油石化等领域提供高性能表面改性解决方案。方法 通过调整热输入量及添加Al2O3陶瓷颗粒的方式制备复合熔覆层,采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对316L/Al2O3(质量分数为6%)复合熔覆层的微观结构及成分进行观察,使用显微硬度计评估其硬度,采用摩擦磨损试验仪测试其耐磨性能,应用电化学工作站测定其耐蚀性能。通过这些方法,系统分析不同激光功率条件下熔覆层的特性。结果 相较于其他功率条件,在激光功率800 W条件下,316L/Al2O3(质量分数为6%)复合熔覆层展现出更佳的综合性能,且显著优于单一的316L熔覆层;该熔覆层内部无明显缺陷,稀释率约为9.6%,仅为316L熔覆层稀释率的50.8%;物相分析结果显示,复合熔覆层主要由铁素体、奥氏体和少量Al2O3组成;在800 W激光功率条件下,Al2O3颗粒的熔化程度最优;其硬度提升了100%以上,摩擦因数降低了25%,耐磨性提升了24倍左右;该熔覆层的电化学自腐蚀电位(Ecorr)为−340 mV,自腐蚀电流密度(Jcorr)为0.96 μA/cm²,相较于单一316L熔覆层的自腐蚀电位高出151 mV,自腐蚀电流密度(6.64 μA/cm²)降低了85.4%。结论 通过添加Al2O3和调整热输入量,能够有效控制熔覆层的稀释率,显著提升熔覆层的耐磨耐蚀性能。
英文摘要:
      The work aims to address the insufficient wear resistance of 316L stainless steel laser cladding layers by proposing a performance optimization strategy integrating both laser power parameters and hard phase Al2O3 particle reinforcement. A low-dilution-rate, high-wear-resistance and corrosion-resistant cladding layer was successfully developed, offering advanced surface modification solutions for applications in rail transportation and petrochemical industries. Laser cladding technology was employed to fabricate a 316L/Al2O3 composite layer on the surface of Q235 steel with 6% Al2O3 powder at varying laser power levels. The addition of Al2O3 effectively blocked part of the laser heat input, allowing control over the effect of thermal input on the dilution rate of the cladding layer while simultaneously enhancing its hardness and wear/corrosion resistance. Various characterization techniques were utilized, including a TESCAN CLARA ultra-high-resolution field emission scanning electron microscope, a Shimadzu XRD-6000 X-ray diffractometer, an HXD-1000TMC microhardness tester, an MMX-3G friction-wear testing machine, and a Versa STAT3 electrochemical workstation, to systematically analyze the microstructure, composition, microhardness, wear performance, and corrosion resistance of the cladding layer. As the laser power decreased from 1 000 W to 800 W, internal defects in the 316L/6% Al2O3 composite cladding layer gradually disappeared, with the thickness reducing from 1.3 mm to 0.7 mm. The cladding layer at 1 000 W exhibited microcracks and contained a small number of pores. Below 900 W, no cracks were observed. However, some pores remained present at 800 W and the thickness of the 316L cladding layer was approximately 2.0 mm, with a certain number of pores aggregating at the internal interface. After addition of Al2O3, the cladding thickness decreased by 65%, eliminating the pores. Under 800 W conditions, the inclusion of alumina resulted in no significant cracks or large pores, yielding a denser structure. The dilution rate of the cladding layer increased progressively with thermal input and Al2O3 effectively mitigated heat input. At 800 W, the dilution rate was approximately 9.6%, only 50.8% of that of the 316L cladding layer. With increasing power, the dilution rates were measured at 11.1% and 16.5% for 900 W and 1 000 W, respectively. The main phases of the 316L/6% Al2O3 composite cladding were austenite, along with ferrite and a small amount of Al2O3. It was observed that as power increased, un-melted Al2O3 particles gradually decreased within the composite cladding layer. At the same 800 W power level, the hardness of the composite cladding was approximately 428HV0.3, representing an increase of over 100% compared to the average hardness of the 316L cladding layer at 200HV0.3. The friction coefficient of the composite layer was about 0.42, reflecting a 25% reduction compared to that of 316L cladding layer. The average wear rates of the composite layers at 1 000, 900, 800 W were 5.35×10−3, 1.13×10−3, 0.59×10−3 mg/(N.m), respectively, showing significant reduction compared to the wear rate of 14.09×10−3 mg/(N.m) for the 316L cladding layer. Notably, the addition of Al2O3 at 800 W improved wear resistance by approximately 24 times. The wear mechanism of the 316L cladding layer was primarily adhesive wear, whereas the 316L/6% Al2O3 composite layer exhibited a combination of abrasive wear and fatigue wear, along with minimal adhesive wear. The cladding layer at 800 W displayed a pronounced passivation region, which gradually shrank with the increasing thermal input. The electrochemical self-corrosion potential (Ecorr) of the cladding layer at 800 W was −340 mV, with a self-corrosion current density (Jcorr) of 0.96 μA/cm², demonstrating the best corrosion resistance among all tested power levels and outperforming the single 316L cladding layer. By incorporating Al2O3 powder and adjusting the thermal input during the laser cladding process of 316L on Q235 steel, it is possible to effectively control the dilution rate, phase composition, and microstructure, thereby significantly enhancing the wear and corrosion resistance of the cladding layer. With other process parameters unchanged, the layer exhibits excellent wear and corrosion resistance at a power level of 800 W.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27676276位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号