王敏,刘星宇,程道来,袁建辉.TGO形貌和厚度对热障涂层热循环应力的影响[J].表面技术,2025,54(6):125-133.
WANG Min,LIU Xingyu,CHENG Daolai,YUAN Jianhui.Effect of TGO Morphology and Thickness on Residual Stress of Thermal Barrier Coatings during Thermal Cycling[J].Surface Technology,2025,54(6):125-133
TGO形貌和厚度对热障涂层热循环应力的影响
Effect of TGO Morphology and Thickness on Residual Stress of Thermal Barrier Coatings during Thermal Cycling
投稿时间:2024-04-07  修订日期:2024-07-31
DOI:10.16490/j.cnki.issn.1001-3660.2025.06.011
中文关键词:  热障涂层  TGO  界面形貌  厚度  残余应力  热循环
英文关键词:thermal barrier coatings  TGO  interface morphology  thickness  residual stress  thermal cycling
基金项目:中国博士后科学基金(2021M691341)
作者单位
王敏 上海电子信息职业技术学院,上海 201400 
刘星宇 上海工程技术大学,上海 201620 
程道来 上海电子信息职业技术学院,上海 201400 
袁建辉 上海工程技术大学,上海 201620 
AuthorInstitution
WANG Min Shanghai Technical Institute of Electronics & Information, Shanghai 201400, China 
LIU Xingyu Shanghai University of Engineering Sciences, Shanghai 201620, China 
CHENG Daolai Shanghai Technical Institute of Electronics & Information, Shanghai 201400, China 
YUAN Jianhui Shanghai University of Engineering Sciences, Shanghai 201620, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 对热循环工况下双陶瓷(LaMgAl11O19/YSZ)热障涂层TGO界面形貌和厚度变化导致的涂层界面残余应力进行仿真分析,为涂层的失效研究提供依据。方法 用Abaqus有限元软件模拟热障涂层不同热循环次数和位置的残余应力分布,通过改变TGO/黏结层交界处相应厚度的材料参数模拟TGO厚度的增长。分析YSZ/TGO不同热循环次数的残余应力与界面形貌的关系。研究TGO/BC界面上位置点随TGO厚度增长而变化的残余应力情况,以及同一位置点在热循环过程中的残余应力变化规律。结果 YSZ/TGO界面在幅值15 µm、波长30 µm的曲线段,波峰经过10次热循环产生最大轴向、径向压应力,分别为87.2 MPa和358.5 MPa,波谷在110次热循环后产生最大径向拉应力201.4 MPa。TGO/BC界面在幅值15 µm、波长30 µm的曲线段,波峰经过10次热循环出现最大轴向、径向压应力,分别为89.5 MPa和336.7 MPa,经过90次热循环出现最大轴向残余拉应力104.7 MPa。TGO/BC界面最左侧点在1 100 ℃保温阶段,轴向和径向残余应力接近0 MPa,第90次热循环后轴向最大拉应力、压应力分别为32.2 MPa和28.7 MPa。结论 TGO界面上振幅大波长短的曲线段,在波峰和波谷位置易产生最大残余应力。径向残余压应力最大值随TGO厚度增加有变小趋势。通过控制TGO的形貌和厚度变化,可以降低热障涂层的失效风险。
英文摘要:
      The axial and radial residual stresses on the TGO/bonding coating interface and the TGO/YSZ interface of YSZ/LaMgAl11O19 dual-ceramic layers, caused by changes of the interface morphology and thickness of the TGO during thermal cycling, are simulated with Abaqus finite element software, so as to provide a basis for the failure study of the coatings. Firstly, four spline curves with two wavelengths (30, 60 µm) and two amplitudes (7.5, 15 µm) are established to simulate the interface morphology between YSZ/TGO and TGO/BC layers. Then, the growth of TGO thickness is simulated by changing the material parameters of the corresponding thickness at the interface between the bonding layer and TGO under different cycles. The thickness of TGO is 1 µm at the beginning of thermal cycling, and it changes to 2.4 µm, 3.7, 4.5, 5.1, and 5.6 µm after 10, 30, 50, 70, and 90 thermal cycling, respectively. The temperature changes of points on the top surface of LaMgAl11O19, LaMgAl11O19/YSZ, and YSZ/TGO interfaces under different cycles are tested. The relationship between axial/radial residual stresses and interface morphology of YSZ/TGO under different thermal cycles is analyzed. The axial/radial residual stress changes of points on the TGO/BC interface, which continuously change with the thickness of TGO, under different cycles, as well as the stress changes of the same position during the thermal cycling process, are also studied. After 10 thermal cycles, the peak position of the curve segment with amplitude of 15 µm and a wavelength of 30 µm on the YSZ/TGO interface generates the maximum axial compressive stress of 87.2 MPa and the maximum radial compressive stress of 358.5 MPa. The trough position has the maximum radial tensile stress of 201.4 MPa after 110 thermal cycles. On the left side of the peak of the curve with amplitude of 7.5 µm and a wavelength of 30 µm, the maximum axial tensile stress of 90.3 MPa appears after 10 thermal cycles. At the peak position of the second curve segment on the TGO/BC interface, the maximum axial compressive stress of 89.5 MPa and the maximum radial compressive stress of 336.7 MPa appear after 10 thermal cycles. After 90 thermal cycles, the 5.6 µm-thick TGO has the maximum axial residual tensile stress of 104.7 MPa. The maximum radial tensile stress of 156.2 MPa occurs at the trough position of the first curve segment after 10 thermal cycles. The axial and radial residual stresses of the left-most point on the TGO/BC interface are close to 0 MPa during the holding stage at 1 100 ℃ temperature. Under the 90th thermal cycle, the maximum axial tensile stress is 32.2 MPa, and the compressive stress is 28.7 MPa. The interface morphology and thickness changes of TGO have a significant effect on the residual stress of dual-ceramic coatings during thermal cycling. The peak and trough positions of curves with large amplitudes and short wavelengths are prone to generate the maximum tensile and compressive residual stresses. The maximum radial compressive stress tends to decrease with the increase of thermal cycles and TGO thickness. By controlling the interface morphology and thickness changes of TGO, the failure risk of thermal barrier coatings can be reduced.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26627574位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号