刘思幸,张泽辰,刘明淼,彭康,胡红钰,吴多利.Ni-Cr-B-Si真空和氩气中钎焊金刚石界面特性及热损伤机理[J].表面技术,2025,54(3):202-209, 219.
LIU Sixing,ZHANG Zechen,LIU Mingmiao,PENG Kang,HU Hongyu,WU Duoli.Interface Characteristics and Thermal Damage Mechanism of Vacuum and Argon Brazed Diamond by Ni-Cr-B-Si Filler Alloy[J].Surface Technology,2025,54(3):202-209, 219
Ni-Cr-B-Si真空和氩气中钎焊金刚石界面特性及热损伤机理
Interface Characteristics and Thermal Damage Mechanism of Vacuum and Argon Brazed Diamond by Ni-Cr-B-Si Filler Alloy
投稿时间:2024-01-09  修订日期:2024-03-24
DOI:10.16490/j.cnki.issn.1001-3660.2025.03.018
中文关键词:  钎焊金刚石  氩气  结合界面  硬质点相  热损伤
英文关键词:diamond brazing  argon  bonding interface  hard point phase  thermal damage
基金项目:国家自然科学基金(52101100);江苏省自然科学基金(BK20170500);扬州市市校合作项目(YZ2023208);江苏省研究生科研与实践创新计划资助项目(KYCX23_3555)
作者单位
刘思幸 扬州大学 机械工程学院,江苏 扬州 225127 
张泽辰 扬州大学 机械工程学院,江苏 扬州 225127 
刘明淼 扬州大学 机械工程学院,江苏 扬州 225127 
彭康 扬州大学 机械工程学院,江苏 扬州 225127 
胡红钰 扬州大学 机械工程学院,江苏 扬州 225127 
吴多利 扬州大学 机械工程学院,江苏 扬州 225127 
AuthorInstitution
LIU Sixing School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
ZHANG Zechen School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
LIU Mingmiao School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
PENG Kang School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
HU Hongyu School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
WU Duoli School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过钎焊试验和表征分析,探讨和揭示Ni-Cr-B-Si合金钎料在真空和氩气气氛中高温钎焊金刚石的界面特性及热损伤。方法 采用Ni-Cr-B-Si合金钎料在真空和氩气气氛中钎焊金刚石/304不锈钢,通过扫描电子显微镜观察钎料/钢基体接头断口和钎焊金刚石的界面微观形貌,使用能量色散光谱仪分析界面的元素扩散分布,利用X射线衍射仪表征界面生成物的物相组成,借助激光共焦拉曼光谱仪分析钎焊金刚石的残余应力与热损伤程度。结果 真空中钎焊的钎料/钢基体接头的拉剪强度最大,为133.05 MPa,氩气气氛中钎焊接头的拉剪强度为125.10 MPa,2种气氛中钎焊的接头断口均主要以脆性断裂为主。在氩气气氛中钎焊后金刚石的界面生成物以条状结构为特征,且金刚石结合界面未产生裂纹,界面组织中未生成硬质点相。氩气气氛中钎焊金刚石的表面残余应力(0.034 GPa)小于真空中钎焊后的金刚石(0.648 GPa)。真空和氩气气氛钎焊金刚石的拉曼特征峰相对强度分别低于原始金刚石的65%和27%。结论 使用氩气气氛钎焊金刚石的研究显示,钎焊金刚石界面组织的均匀性得到改善,熔融钎料表面的硬质点相得到了有效控制,有利于提高金刚石磨粒的结合强度并缓解金刚石的热损伤程度。
英文摘要:
      During the high-temperature brazing process, the interaction between the diamond interface, filler alloy and substrate through diffusion and chemical reaction results in high bonding of the abrasive grains, which fundamentally improves the bonding strength. Therefore, the diamond brazing technique with high grits holding strength compared with traditional electroplated and resin binder process can effectively improve the grinding efficiency and service life. However, it is found that diamond brazing with Ni-Cr filler alloy has the following disadvantages. The residual thermal stress around diamond interface may occur during high temperature brazing process. In case of inappropriate brazing temperature, micro cracks are prone to occur at the brazing diamond interface. The hardness of the brazing surface increases while the plasticity decreases, which will make the residual stress on the diamond interface larger. The catalyst element (Ni) of diamond synthesis, which may accelerate the graphitization of diamond during high temperature brazing, leading to a certain degree of thermal damage. Most previous researches on higher temperature brazing flaws have focused on heating temperature, filler alloy composition and coating, but no studies on atmosphere have been intensively conducted. Therefore, this study explores and reveals the interfacial properties and thermal damage of Ni-Cr-B-Si alloy brazing material for high temperature brazing of diamond in vacuum and argon atmospheres through brazing experiments and characterization analysis. In this study, active Ni-Cr-B-Si filler alloy brazing material is used to braze diamond/304 stainless steel in vacuum and argon atmospheres, respectively. A scanning electron microscopy (SEM) is used to observe the interfacial micromorphology of brazed diamond/filler alloy and the joint surface of the filler alloy/steel matrix. An energy dispersive spectroscopy (EDS) is applied to analyze the elemental diffusion distribution at the interface. An X-ray diffraction (XRD) is employed to determine the phase composition of the interfacial products, and a laser confocal Raman spectroscopy is selected to analyze the residual stress and thermal damage of brazed diamond. The results show that, the tensile shear strength of the brazed filler alloy/steel matrix joint in vacuum is 133.05 MPa, and that of the brazed joint in argon atmosphere is 125.10 MPa. And the brittle fracture is the main fracture of the brazed joint in both atmospheres. The interfacial product of diamond after brazing in the argon atmosphere is characterized by a striated structure, and the diamond bonding interface does not produce cracks, and no hard point phases are generated in the interface structure. The surface residual stress of brazed diamond in the argon atmosphere (0.034 GPa) is less than that of diamond after brazing in vacuum (0.648 GPa). The relative intensities of the Raman peaks of brazed diamond in vacuum and argon atmospheres are 65% and 27% lower than that of original single crystal diamond, respectively. The research of brazing diamond in the argon atmosphere shows that the uniformity of the brazing diamond interface is improved, the hard point phase on the surface of molten brazing filler metal is effectively controlled, which is beneficial to improving the bonding strength of diamond abrasive particles and alleviating the degree of thermal damage of diamond.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26660886位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号