陈维铅,喇培清,许世鹏,马超,李亚明.热处理对Fe-Al渗层组织结构及其熔融氯化盐腐蚀性能的影响[J].表面技术,2025,54(2):148-160.
CHEN Weiqian,LA Peiqing,XU Shipeng,MA Chao,LI Yaming.Effect of Heat Treatment on Microstructure and Corrosion Resistance of the Fe-Al Layer in Molten Chloride Salt[J].Surface Technology,2025,54(2):148-160
热处理对Fe-Al渗层组织结构及其熔融氯化盐腐蚀性能的影响
Effect of Heat Treatment on Microstructure and Corrosion Resistance of the Fe-Al Layer in Molten Chloride Salt
投稿时间:2024-03-09  修订日期:2024-05-24
DOI:10.16490/j.cnki.issn.1001-3660.2025.02.012
中文关键词:  310S钢  Fe-Al渗层  包埋渗铝  热扩散处理  氯化盐腐蚀
英文关键词:310S stainless steel  Fe-Al aluminide coating  pack cementation  thermal diffusion treatment  chloride corrosion
基金项目:甘肃省自然科学基金(23JRRF001);甘肃省职业教育教学改革研究项目(2023gszyjy-50)
作者单位
陈维铅 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;酒泉职业技术学院 甘肃省太阳能发电系统重点实验室,甘肃 酒泉 735000 
喇培清 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050 
许世鹏 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;酒泉职业技术学院 甘肃省太阳能发电系统重点实验室,甘肃 酒泉 735000 
马超 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;酒泉职业技术学院 甘肃省太阳能发电系统重点实验室,甘肃 酒泉 735000 
李亚明 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;酒泉职业技术学院 甘肃省太阳能发电系统重点实验室,甘肃 酒泉 735000 
AuthorInstitution
CHEN Weiqian State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China;Gansu Key Laboratory of Solar Power System, Jiuquan Vocational Technical College, Gansu Jiuquan 735000, China 
LA Peiqing State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China 
XU Shipeng State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China;Gansu Key Laboratory of Solar Power System, Jiuquan Vocational Technical College, Gansu Jiuquan 735000, China 
MA Chao State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China;Gansu Key Laboratory of Solar Power System, Jiuquan Vocational Technical College, Gansu Jiuquan 735000, China 
LI Yaming State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China;Gansu Key Laboratory of Solar Power System, Jiuquan Vocational Technical College, Gansu Jiuquan 735000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探索热扩散处理温度对Fe-Al渗层组织结构的影响,研究其在熔融氯化盐中的腐蚀性,为310S不锈钢在光热发电氯化盐储热领域的应用提供技术方案。方法 使用77%Al2O3+20%Al+3%AlCl3(质量分数)渗铝剂在310S钢表面制备Fe-Al涂层,并通过750~950 ℃热扩散处理30 h,改善渗层的结构及物相组成;在800 ℃三元共晶熔融氯化盐浸泡30 h,评价不同热扩散处理温度对渗铝层耐腐蚀性的影响。采用XRD、SEM、EDS等分析腐蚀前后渗层微观结构、物相组成,以及截面形貌和元素分布。结果 800 ℃保温15 h在310S钢表面制备了140 μm厚的渗铝层,通过热扩散处理发现,温度对渗层结构及物相组成具有较大的影响。800 ℃以下热扩散处理渗层结构及组成基本没有变化,外层主要以Fe2Al5相为主,过渡层为FeAl相,腐蚀后表面未形成连续的氧化层。850 ℃处理渗层截面中间层出现了大量不规则孔洞,腐蚀后表面形成厚度约为15 μm的Al2O3层,对渗层起到了一定的保护作用,但氧化层与渗层界面结合不紧密,容易脱落。900 ℃热处理渗层物相均转化为FeAl相,与基体结合界面形成厚度约为30.4 μm的互扩散区;腐蚀后渗层表面形成厚度约为32 μm的Al2O3层,且无裂纹、孔洞,与渗层结合良好,耐腐蚀性能最佳。950 ℃处理渗层腐蚀后表面未形成氧化层,出现了54 μm的沿晶腐蚀深度。结论 310S钢表面渗铝层经900 ℃热扩散处理后,在熔融氯化盐腐蚀环境中形成了连续、致密的Al2O3层,展现出了良好的耐腐蚀性能。
英文摘要:
      The work aims to explore the effect of thermal diffusion treatment temperature on the microstructure of the Fe-Al aluminide coating, study its corrosion resistance in molten chloride salt, and provide a technical scheme for the application of 310S stainless steel in the field of chloride salt heat storage for photothermal power generation. The aluminide coating was prepared on the surface of 310S steel by pack cementation with a mass percentage of 77% Al2O3+20%Al+3%AlCl3 penetrant, and then it was treated by thermal diffusion for 30 h at 750-950 ℃ to improve the structure and phase composition and soaked in ternary eutectic molten chloride salt of 24.5% NaCl + 20.5% KCl + 54% MgCl2 for 30 h at 800 ℃. The effect of different thermal diffusion treatment temperatures on the corrosion resistance of aluminized coating was evaluated by static corrosion test. The microstructure, phase composition, cross-section morphology and element distribution of the coating before and after corrosion were analyzed by XRD, SEM and EDS. The section hardness of the coating was measured by microhardness tester. The aluminized coating was prepared by pack cementation for 15 h at 800 ℃ on the surface of 310S steel and its thickness was about 140 μm. The structure and phase composition of the aluminized layer were greatly affected by different temperatures of thermal diffusion treatment. The structure and composition of the aluminide coating under 800 ℃ thermal diffusion treatment were not changed. The structure of the coating was divided into outer layer and transient layer, which was mainly composed of Fe2Al5 phase at outer layer and FeAl phase at transient layer. The continuous oxide layer on the surface of the aluminized coating was not formed after corrosion in molten salt, and it was poorly protective for matrix. A large number of irregular holes appeared in the middle layer of the aluminide coating by thermal treatment at 850 ℃. An Al2O3 layer with a thickness of about 15 μm was formed on the surface of the coating after corrosion, which played a certain role in protecting for aluminide coating. However, coherent cracks appeared at the interface of the oxide layer and the aluminide layer, leading to loose bonding and easy falling. The phases of the aluminide coating treated at 900 ℃ were fully transformed into FeAl phase, and the interdiffusion zone with a thickness of 30.4 μm was formed at the interface of the matrix and coating, which enhanced the interface bonding force between the coating and the matrix. After corrosion, an Al2O3 layer with a thickness of about 32 μm was formed on the surface of the coating, and there were no cracks and holes in the interface of the coating and the oxide layer, and the better combination was achieved, which showed the best corrosion resistance. On the surface of the aluminide coating treated at 950 ℃, oxide layer was not formed after corrosion, and the corrosion depth of the aluminide coating along the grain boundary was about 54 μm, which showed poorer corrosion resistance. However, the surface of the aluminide coating on the 310S steel thermally treated at 900 ℃ in molten chloride salt showed best corrosion resistance, due to the formation of a dense and continuous Al2O3 layer in the corrosion environment.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27285346位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号