李荣斌,康旭,周滔,张如林,蒋春霞,王璐.铜金属化中扩散阻挡层的研究进展[J].表面技术,2025,54(1):84-96. LI Rongbin,KANG Xu,ZHOU Tao,ZHANG Rulin,JIANG Chunxia,WANG Lu.Research Advances in Diffusion Barrier Layers in Copper Metallization[J].Surface Technology,2025,54(1):84-96 |
铜金属化中扩散阻挡层的研究进展 |
Research Advances in Diffusion Barrier Layers in Copper Metallization |
投稿时间:2024-04-02 修订日期:2024-06-13 |
DOI:10.16490/j.cnki.issn.1001-3660.2025.01.008 |
中文关键词: 铜金属化 扩散阻挡层 薄膜制备 石墨烯 自组装分子层 高熵合金 |
英文关键词:copper metallization diffusion barrier layer thin film fabrication graphene self-assembled monolayers high-entropy alloys |
基金项目:国家自然科学基金联合基金重点项目(U23A20607);上海市工业强基专项(GYQJ-2023-1-06);上海大件热制造工程技术研究中心项目(18DZ2253400) |
|
Author | Institution |
LI Rongbin | School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;School of Materials, Shanghai Dianji University, Shanghai 201306, China |
KANG Xu | School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China |
ZHOU Tao | School of Materials, Shanghai Dianji University, Shanghai 201306, China |
ZHANG Rulin | School of Materials, Shanghai Dianji University, Shanghai 201306, China |
JIANG Chunxia | School of Materials, Shanghai Dianji University, Shanghai 201306, China |
WANG Lu | School of Materials, Shanghai Dianji University, Shanghai 201306, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
随着第四次工业革命的到来,集成电路尺寸的微小型化是其发展的必然结果。铜互连取代铝互连在集成电路后道工艺中取得了革命性变革,为推动集成电路产业迈向新的发展阶段注入了强劲动力。然而,随着半导体器件尺寸的减小,铜原子向硅界面的快速扩散行为严重阻碍了铜金属化的发展。该领域重要的目标是制造超薄尺寸、低电阻率和热稳定的新型铜扩散阻挡材料,以实现铜/硅界面的可靠耦合。从4个方面总结了铜金属化中扩散阻挡层的研究进展,首先讨论了铜金属化取代铝金属化面临的关键问题及其解决方案;随后,介绍了铜金属化中扩散阻挡层的制备方法,主要包括气相沉积技术、原子层沉积技术和电沉积技术等;然后着重对铜互连中扩散阻挡层的常用材料(金属基、碳材料、自组装分子层及高熵合金)进行了讨论,系统综述了不同材料的阻挡特性,理清了扩散阻挡层材料结构与扩散阻挡性能的构效关系;最后展望了亚纳米厚度的高性能扩散阻挡层的材料筛选策略,以及制备方法的选择。 |
英文摘要: |
With the arrival of the Fourth Industrial Revolution, the inevitable consequence of its development is the miniaturization of integrated circuit dimensions. Interconnect materials must possess excellent electrical conductivity and thermal conductivity, as these are crucial for reducing signal transmission delays and preventing chip overheating. The replacement of aluminum interconnects with copper interconnects represents a revolutionary advancement in the post-processing technology of integrated circuits, thus propelling the development of the integrated circuit industry. However, as semiconductor device dimensions continue to decrease, the rapid diffusion of copper atoms towards the silicon interface poses a significant challenge to the advancement of copper metallization. This diffusion phenomenon severely impedes the performance and reliability of integrated circuits. In response to these challenges, researchers have focused on developing effective diffusion barrier layers in copper metallization. These barrier layers play a crucial role in preventing the undesired diffusion of copper atoms into the silicon substrate, thereby ensuring the integrity and stability of the integrated circuits. Moreover, the development of advanced diffusion barrier materials has become imperative to meet the increasing demands for ultra-thin dimensions, low resistivity, and thermal stability in modern semiconductor devices. The diffusion barrier layer should meet the following conditions:The diffusion barrier layer should have a high melting point and maintain good adhesion with both copper and the dielectric layer, so as to ensure that even at elevated temperature, the layer will not crack due to thermal stress; The diffusion barrier layer should exhibit excellent chemical inertness, which means that it should not dissolve into copper nor react with silicon; The diffusion barrier layer should have low resistivity and good thermal conductivity to facilitate efficient electrical and thermal conduction; The diffusion barrier layer should be deposited uniformly and smoothly onto the dielectric layer to ensure consistent performance across the integrated circuit. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|