滑利强,苏峰华,李吉,林松盛.HiPIMS制备Cr/CrxCy梯度过渡层对DLC薄膜结构及性能的影响[J].表面技术,2025,54(1):62-73.
HUA Liqiang,SU Fenghua,LI Ji,LIN Songsheng.Effect of Cr/CrxCy Gradient Transition Layer Prepared with HiPIMS on Properties of DLC Films[J].Surface Technology,2025,54(1):62-73
HiPIMS制备Cr/CrxCy梯度过渡层对DLC薄膜结构及性能的影响
Effect of Cr/CrxCy Gradient Transition Layer Prepared with HiPIMS on Properties of DLC Films
投稿时间:2024-04-15  修订日期:2024-07-09
DOI:10.16490/j.cnki.issn.1001-3660.2025.01.006
中文关键词:  HiPIMS  DLC薄膜  摩擦学性能  过渡层  耐磨性  耐腐蚀性能
英文关键词:HiPIMS  DLC films  tribological property  transition layer  abrasive resistance  decay resistance
基金项目:国家自然科学基金(52175168);广东省基础与应用基础研究基金(2023A1515240006)
作者单位
滑利强 华南理工大学 机械与汽车工程学院,广州 510640;广东省科学院新材料研究所 现代材料表面工程技术国家工程实验室,广州 510650 
苏峰华 华南理工大学 机械与汽车工程学院,广州 510640 
李吉 福建联合石油化工有限公司,福建 泉州 362800 
林松盛 广东省科学院新材料研究所 现代材料表面工程技术国家工程实验室,广州 510650 
AuthorInstitution
HUA Liqiang School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China 
SU Fenghua School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 
LI Ji Fujian Refining & Petrochemical Company Limited, Fujian Quanzhou 362800, China 
LIN Songsheng National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究高功率脉冲磁控溅射功率制备Cr/CrxCy梯度过渡层对DLC薄膜性能的影响,以制备具有优良结合强度、摩擦磨损性能和耐腐蚀性能的DLC薄膜。方法 利用高功率脉冲磁控溅射(HiPIMS)和直流磁控溅射(DCMS)在304不锈钢和YG6硬质合金表面制备具有Cr/CrxCy梯度过渡层的DLC薄膜,研究不同HiPIMS电源功率下制备的Cr/CrxCy过渡层对DLC薄膜的结构和性能的影响。采用SEM、AFM对薄膜的表面、截面形貌进行观察。利用UMT-Tribolab摩擦磨损划痕实验机测试薄膜的膜基结合强度和摩擦磨损性能,利用光学显微镜观察划痕,并测算结合力,分析磨损机制。利用电化学工作站对制备的DLC薄膜进行耐腐蚀试验。结果 随着HiPIMS电源功率的提升,Cr/CrxCy梯度过渡层的厚度随之增加,最厚为200 nm,薄膜的表面粗糙度随之下降,由对照组S1的4.69 nm降至S5的1.15 nm。薄膜的纳米硬度出现逐渐升高的现象,由S1的18.76 GPa升至S5的23.77 GPa。薄膜的膜基结合力表现出先减小后增大的趋势,S5组样品的膜基结合力最大,为22.19 N。薄膜的摩擦因数随着HiPIMS功率的升高而降低,最低为S5组的0.032 2,对应薄膜的磨损率为4.2×107 mm3/(N.m)。电化学试验结果表明,当HiPIMS电源功率为2.4 kW时,所制备的DLC薄膜具有最低的腐蚀电流密度和最高的界面电荷转移电阻,其耐腐蚀性能最优。结论 利用高功率脉冲磁控溅射技术制备DLC薄膜的Cr/CrxCy梯度过渡层可以有效提高薄膜的表面质量,提高薄膜的膜基结合力,降低薄膜的残余应力,同时降低薄膜的摩擦因数,提高薄膜的耐磨性。采用HiPIMS制备的Cr/CrxCy梯度过渡层DLC薄膜具有较低的腐蚀电流密度和较高的界面电荷转移电阻,其耐腐蚀性能得到提升。
英文摘要:
      Diamond-like carbon (DLC) film is an excellent solid lubricant with high hardness and low friction, but at the same time, the DLC film has the disadvantage of poor substrate bonding. In order to investigate the effect of Cr/CrxCy gradient transition layer prepared by HiPIMS on the properties of DLC films, and to prepare DLC films with excellent bond strength, friction and wear properties and corrosion resistance, DLC films with a Cr/CrxCy gradient transition layer were prepared on the surfaces of 304 stainless steel and YG6 tungsten carbide by high-power pulsed magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS). The effects of the Cr/CrxCy gradient layer on the structure and properties of the DLC films were investigated under different HiPIMS power sources. The cross-sectional morphology of the films was observed by SEM, the surface morphology and roughness of the films were analyzed by AFM, and the film-base bonding strength and friction and wear properties of the films were tested with an UMT-Tribolab friction and wear scratching experimental machine, and the scratching was observed and the bonding size was measured with an optical microscope to analyse the wear mechanism. The prepared DLC films were tested for corrosion resistance with an electrochemical workstation. The thickness of the Cr/CrxCy gradient transition layer increased with the increase of the HiPIMS power supply. The thickest was 200 nm, the surface roughness of the films decreased from 4.69 nm in the control group S1 to 1.15 nm in the S5 group. The nano-hardness of the films gradually increased from 18.76 GPa in S1 to 23.77 GPa in S5. The film-base bonding force of the films showed a tendency of decreasing and then increasing, and the maximum film-base bonding force of the samples in the S5 group was 22.19 N. The friction coefficient of the films increased with the HiPIMS power supply and the friction coefficient of the films increased with the increase in the HiPIMS power supply and the friction coefficient of the samples in the S5 group. The friction coefficient of the films decreased with the increase of HiPIMS power, and the lowest was 0.032 2 for the S5 group, which corresponded to the wear rate of the films of 4.2×10−7 mm3/(N.m). Electrochemical tests showed that the DLC films prepared when the HiPIMS power supply was 2.4 kW had the lowest corrosion current density, the highest interfacial charge transfer resistance, and the best corrosion resistance. Using high-power pulsed magnetron sputtering technology to prepare the Cr/CrxCy gradient transition layer of DLC films can effectively improve the surface quality of the film, improve the film base bonding force of the film, reduce the residual stress of the film, and at the same time reduce the friction coefficient of the film to improve the wear resistance of the film. Compared with DCMS, HiPIMS can make the transition layer of DLC more dense, reduce the porosity of the film, and improve the corrosion resistance of the film. The DLC films with a Cr/CrxCy gradient transition layer prepared by HiPIMS have a lower corrosion current density and higher interfacial charge transfer resistance to enhance the corrosion resistance.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第25125973位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号