董刚,曾宇,胡健东,庞靖凯,杨高林,石岳林,张群莉,姚建华.Mo含量对激光熔覆316L组织和耐蚀性能的影响[J].表面技术,2024,53(23):204-215.
DONG Gang,ZENG Yu,HU Jiandong,PANG Jingkai,YANG Gaolin,SHI Yuelin,ZHANG Qunli,YAO Jianhua.Influence of Mo Content on Microstructure and Corrosion Resistance of Laser-cladded 316L[J].Surface Technology,2024,53(23):204-215
Mo含量对激光熔覆316L组织和耐蚀性能的影响
Influence of Mo Content on Microstructure and Corrosion Resistance of Laser-cladded 316L
投稿时间:2024-01-29  修订日期:2024-04-09
DOI:10.16490/j.cnki.issn.1001-3660.2024.23.018
中文关键词:  激光熔覆  316L  Mo元素  耐蚀性能  晶粒尺寸  晶粒取向
英文关键词:laser cladding  316L  Mo element  corrosion resistance performance  grain size  grain orientation
基金项目:国家自然科学基金重点项目(52035014);浙江省公益技术应用研究项目(LGG22E050036);舟山科技计划项目(2023C13011)
作者单位
董刚 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
曾宇 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
胡健东 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
庞靖凯 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
杨高林 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
石岳林 舟山市鼎尊智能科技有限公司,浙江 舟山 316000 
张群莉 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
姚建华 浙江工业大学 激光先进制造研究院 机械工程学院,杭州 310023;特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
AuthorInstitution
DONG Gang Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
ZENG Yu Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
HU Jiandong Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
PANG Jingkai Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
YANG Gaolin Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
SHI Yuelin Zhoushan Dingzun Technology Co., Ltd., Zhejiang Zhoushan 316000, China 
ZHANG Qunli Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
YAO Jianhua Institute of Laser Advanced Manufacturing,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Special Equipment Manufacturing and Advanced Processing Technology Key Laboratory of the Ministry of Education/Zhejiang Province, Hangzhou 310023, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同Mo添加量对316L熔覆层组织和耐腐蚀性能的影响,进一步提高316L激光熔覆层耐海水腐蚀的能力,以实现高质量的激光再制造修复。方法 利用激光熔覆技术和316L不锈钢合金粉末,通过在粉末中添加不同比例的球形Mo粉(质量分数为2%、4%、6%)来制备熔覆层,利用金相显微镜、扫描电子显微镜、激光共聚焦显微镜、X射线衍射仪、电化学工作站对熔覆层的宏观形貌、微观组织、物相组成、元素分布、晶粒取向和耐腐蚀性能进行表征。结果 Mo的添加量不超过4%时,熔覆层内的物相并未发生改变,仍由奥氏体组成。当Mo的添加量达到6%时,过冷度增大导致奥氏体向马氏体转变,熔覆层内出现大量未完全熔化的Mo颗粒。随着Mo含量的增加,晶粒在<001>方向的织构强度下降,有向<111>方向生长的趋势。平均晶粒尺寸由235.59 µm下降到184.35 µm,小尺寸晶粒占比增大,导致位错在晶粒内部积累,熔覆层内位错密度增大。同时,晶粒细化有助于形成更致密的钝化膜。电化学测试中,随着Mo含量的增加,点蚀坑数量明显下降,熔覆层的耐腐蚀性能得到提升。Mo的添加量为4%时,自蚀电流密度较不添加组由8.253×10–6 A/cm2减小至4.540×10–7 A/cm2,钝化电阻由4 927 Ω.cm2增大到8 702 Ω.cm2,提升约75%。结论 在激光熔覆316L时,适量增加Mo元素含量,能够细化晶粒,使得熔覆层表面形成的钝化膜更加致密,提高钝化膜抵抗侵蚀的能力,进一步提升316L熔覆层的耐海水腐蚀能力。
英文摘要:
      To achieve high-quality laser remanufacturing of 316L components, alloying element Molybdenum (Mo) is added during the laser cladding of 316L stainless steel powder to further enhance the corrosion resistance of 316L stainless steel in environments containing chloride ions, such as seawater. In order to study the effects of varying Mo content on the microstructure and corrosion resistance of the 316L cladding layer, laser cladding technology was utilized to fabricate 316L cladding layers with different Mo additions (2wt.%, 4wt.%, 6wt.%) on a 316L stainless steel substrate. The macroscopic morphology, microstructure, phase composition, elemental distribution, grain orientation, and corrosion resistance of the cladding layers were characterized by metallographic microscopy, scanning electron microscopy, laser confocal microscopy, X-ray diffraction, and an electrochemical workstation. The results indicated that when the addition of Mo element did not exceed 4%, the phase within the cladding layer remained unchanged, still comprising austenitic phases. However, when the Mo addition reached 6%, the substantial incorporation of Mo reduced the stability of austenite in the stainless steel. The increased undercooling altered the solidification conditions of the alloy, causing partial transformation of austenite into martensite, while a significant amount of un-melted Mo particles appeared in the cladding layer. With the increased content of Mo, the texture strength of grains in the <001> direction decreased, showing a tendency to grow towards the <111> direction. Moreover, the grains became refined, with the average grain size in the cladding layer reducing from 235.59 µm to 184.35 µm. The higher proportion of smaller-sized grains increased the grain boundary area, resulting in the accumulation of dislocations within the grains and enhancing the dislocation density of the cladding layer. The smaller grain size, with its larger grain boundary area, provided more nucleation sites for the growth of the passivation layer and could promote the formation of a uniform and dense passivation film, which significantly impacted the corrosion resistance. Additionally, as the content of Mo element increased, the number of pitting sites decreased, resulting in a significant improvement in the cladding layer's corrosion resistance. When the Mo addition was at 4%, the self-corrosion current density reduced from 8.253×10–6 A/cm2 in the untreated group to 4.540×10–7 A/cm2, and the passivation resistance increased from 4 927 Ω.cm2 to 8 702 Ω.cm2, an enhancement of approximately 75%. With a Mo addition of 6%, the self-corrosion current density and the passivation resistance value started to decline but still performed better than the untreated group. The reason for this was the presence of un-melted Mo particles in the cladding layer at the 6% addition level, which lead to an uneven distribution of elements. Localized regions with elevated content of Mo could form galvanic cells with other areas, with the Mo-rich regions acting as anodes, thereby exacerbating corrosion in the other areas and causing an overall decline in the cladding layer's corrosion resistance. Chloride ions, being a highly penetrative substance, are capable of penetrating the passivation film, leading to pitting and intergranular corrosion. The addition of Mo enhances the performance of the passivation film, rendering the surface passivation layer of the cladding denser and more stable against the attack of chloride ions. This further improves the resistance of the 316L cladding layer to corrosive agents present in marine environments.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24836087位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号