杜建融,陶冠羽,曾路,陈辉,杨汉哲,吴振宇.TiAlSiN纳米复合涂层的研究进展[J].表面技术,2024,53(18):31-54.
DU Jianrong,TAO Guanyu,ZENG Lu,CHEN Hui,YANG Hanzhe,WU Zhenyu.Research Progress on TiAlSiN Nanocomposite Coatings[J].Surface Technology,2024,53(18):31-54
TiAlSiN纳米复合涂层的研究进展
Research Progress on TiAlSiN Nanocomposite Coatings
投稿时间:2023-11-14  修订日期:2024-02-26
DOI:10.16490/j.cnki.issn.1001-3660.2024.18.003
中文关键词:  TiAlSiN纳米复合涂层  力学性能  硬度  韧性  结合力  摩擦磨损
英文关键词:TiAlSiN nanocomposite coating  mechanical properties  hardness  toughness  adhesion  friction and wear
基金项目:装备制造基础通用国际标准研究(2021YFF0601702);湖北省重点研发计划(2021BAA210);国家自然科学基金面上项目(52175182);湖北省自然科学基金(2022CFB936)
作者单位
杜建融 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030 
陶冠羽 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030;武汉理工大学 汽车工程学院,武汉 430070 
曾路 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030 
陈辉 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030 
杨汉哲 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030 
吴振宇 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;特种表面保护材料及应用技术国家重点实验室,武汉 430030 
AuthorInstitution
DU Jianrong China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China 
TAO Guanyu China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China;School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China 
ZENG Lu China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China 
CHEN Hui China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China 
YANG Hanzhe China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China 
WU Zhenyu China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China;State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan 430030, China 
摘要点击次数:
全文下载次数:
中文摘要:
      随着现代加工需求的不断提高,对刀具涂层的性能要求愈发苛刻。相较于CrN、TiN、TiAlN等传统硬质涂层,TiAlSiN纳米复合涂层凭借优异的硬度、耐磨性、耐蚀性和高温抗氧化性,成为了减少工件磨损、延长使用寿命的最佳候选材料,被广泛应用于汽车、航空航天、通用机械等刀具加工领域,引起了研究者的广泛关注。为此,本文综述了TiAlSiN纳米复合涂层在微观结构、力学性能和实际应用方面的研究进展;阐述了TiAlSiN纳米复合涂层元素组成、制备工艺对其微观结构的影响规律及作用机理;重点讨论了TiAlSiN纳米复合涂层力学性能(如硬度、韧性、结合力及耐磨性)的影响规律及作用机制,包括归纳了Hall-Petch效应、固溶强化、共格外延、模量差异、晶界复合在内的5种TiAlSiN纳米复合涂层的增硬机理,对比分析了不同涂层增韧的途径与机制,探讨了TiAlSiN纳米复合涂层结合力与摩擦学性能的影响因素;最后,介绍了TiAlSiN纳米复合涂层在刀具、模具等典型应用领域的发展现状,并对TiAlSiN纳米复合涂层未来的研究趋势和发展方向进行了展望,以期为发展高效、高性能、低成本的刀具硬质涂层提供参考。
英文摘要:
      With the emergence of difficulty to machine materials and the increasing demand for modern machining, the performance requirements for tool coatings are becoming increasingly stringent. Traditional binary and ternary hard coatings are no longer able to meet the requirements of modern machining fields for efficient, high-precision, and long-life tools. TiAlSiN nanocomposite coatings have rapidly developed in the field of tool processing due to their excellent toughness, wear resistance, corrosion resistance, and high-temperature oxidation resistance. They have been widely used in fields such as automobiles, aerospace, general machinery, and have great potential in marine, agricultural, and other fields. In this work, the structural characteristics of TiAlSiN nanocomposite coatings were first introduced:TiAlSiN nanocomposite coatings were a nanocomposite structure composed of nanocrystalline phase nc-TiAlN and amorphous phase a-Si3N4. nc-TiAlN was embedded as a nanocrystalline phase in the matrix phase composed of amorphous phase a-Si3N4, where the nanocrystalline phase included orthorhombic phase c-AlN, hexagonal phase h-AlN, tetragonal phase t-TiN, cubic phase c-TiN, and two TixAl1-xN structures. In addition, changes in Ti/Al ratio and Si content also affected its crystal structure and grain size. Afterwards, based on this, the research progress in mechanical properties of TiAlSiN nanocomposite coatings was mainly explored. In this section, at first, the hardness strengthening mechanism of TiAlSiN nanocomposite coatings was introduced, and then the influence of phase structure and microstructure on the hardness of TiAlSiN nanocomposite coatings was summarized; Secondly, the method for characterizing the toughness of TiAlSiN nanocomposite coatings (Vickers indentation), the parameters H/E and H3/E2 related to toughness were introduced. The ways to improve the toughness of coatings were summarized, including structural toughening and toughness phase toughening. The effects of process parameters, preparation techniques, coating design, and element content on the toughness of TiAlSiN nanocomposite coatings were summarized; Thirdly, methods for characterizing the adhesion of TiAlSiN nanocomposite coatings were introduced, and the effects of matrix composition, matrix pretreatment, adhesive layer design, coating composition, and preparation process on the adhesion were discussed; Fourthly, the tribological properties of TiAlSiN nanocomposite coatings were explored, pointing out the preparation process, coating composition and structural design, the influence of friction pair materials on the tribological properties of the coatings, and the causes of high friction coefficients. The mechanisms that affected their tribological properties were also discussed. At the same time, the current status of TiAlSiN nanocomposite coatings in typical application fields such as cutting tools and molds was introduced, and the advantages of TiAlSiN nanocomposite coatings compared with traditional binary and ternary coatings in various processing environments (dry and wet cutting environments, using different types of tools, rock cutting environments and mold processing) and the cost advantages of diamond coatings were summarized. Finally, the shortcomings of existing research were pointed out, and further research was needed on the research on the fundamental theoretical level of TiAlSiN nanocomposite coatings. Suggestions for process improvement and structural design optimization were made for the future research and development direction of TiAlSiN nanocomposite coatings. Potential application areas of TiAlSiN nanocomposite coatings were pointed out, providing reference for future research and application of TiAlSiN nanocomposite coatings technology.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22848190位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号