党钰钦,李冬杰,刘艳梅,赵治伟,白云龙,Kim Kwang Ho,连伟锋,王子铭,王铁钢.球墨铸铁表面激光熔覆层的组织及耐腐蚀性能研究[J].表面技术,2024,53(17):126-134, 145.
DANG Yuqin,LI Dongjie,LIU Yanmei,ZHAO Zhiwei,BAI Yunlong,KIM Kwang,Ho,LIAN Weifeng,WANG Ziming,WANG Tiegang.Microstructure and Corrosion Resistance of the Laser Cladding Layer on Nodular Cast Iron Surface[J].Surface Technology,2024,53(17):126-134, 145
球墨铸铁表面激光熔覆层的组织及耐腐蚀性能研究
Microstructure and Corrosion Resistance of the Laser Cladding Layer on Nodular Cast Iron Surface
投稿时间:2024-02-06  修订日期:2024-07-03
DOI:10.16490/j.cnki.issn.1001-3660.2024.17.011
中文关键词:  激光熔覆  球墨铸铁  Fe基  Ni基  耐腐蚀性能
英文关键词:laser cladding  nodular cast iron  Fe-base  Ni-base  corrosion resistance
基金项目:黑龙江省基金重点项目(22JCZDJC00670);天津市多元投入基金重点项目(22JCYBJC01600)
作者单位
党钰钦 天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222;天津辉锐激光科技有限公司,天津 300384 
李冬杰 天津辉锐激光科技有限公司,天津 300384 
刘艳梅 天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222 
赵治伟 天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222 
白云龙 中国第一重型机械股份公司天津重型装备工程研究有限公司,天津 300457 
Kim Kwang Ho Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, Busan 609-735, The Republic of Korea 
连伟锋 常州光洋轴承股份有限公司,江苏 常州 213022 
王子铭 常州光洋轴承股份有限公司,江苏 常州 213022 
王铁钢 天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222 
AuthorInstitution
DANG Yuqin Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China 
LI Dongjie Tianjin Huirui Laser Technology Co., Ltd., Tianjin 300384, China 
LIU Yanmei Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China 
ZHAO Zhiwei Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China 
BAI Yunlong CFHI Tianjin Heavy Industries Research & Development Co., Ltd., Tianjin 300457, China 
KIM Kwang,Ho Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, Busan 609-735, The Republic of Korea 
LIAN Weifeng Chagnzhou NRB Corporation, Jiangsu Changzhou 213022, China 
WANG Ziming Chagnzhou NRB Corporation, Jiangsu Changzhou 213022, China 
WANG Tiegang Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决用于乏燃料贮运的球墨铸铁筒体容器因内壁腐蚀导致服役寿命短的问题,提高球墨铸铁表面的硬度及耐腐蚀性能。方法 利用送粉式激光熔覆技术在球墨铸铁表面制备4种不同组分的316L不锈钢、Ni625合金、410L不锈钢及NJ30合金熔覆层。采用金相显微镜、X射线衍射仪、扫描电子显微镜、能谱仪表征熔覆层的微观组织、物相组成、元素分布及腐蚀形貌。借助显微硬度计、电化学工作站测试熔覆层的显微硬度及耐腐蚀性能。结果 4种合金熔覆层均成形质量良好,无裂纹及明显的气孔缺陷,并与基体形成了良好的冶金结合。熔覆层底部至顶部出现相似的组织形态,但晶粒尺寸存在较大的差异。316L、Ni625、410L及NJ30显微硬度显著高于基体,分别为基体的1.74、1.92、2.35及2.4倍,熔覆层内部固溶体及硬质相的生成是提高硬度的显著因素。在3.5%的NaCl溶液中,4种熔覆层的耐腐蚀性由好到差为316L、Ni625、410L、NJ30。腐蚀形貌显示,316L及Ni625熔覆层在电化学测试环境下具有良好的抗腐蚀性能。结论 316L及Ni625合金熔覆层具有良好的综合性能,适用于提高大型球墨铸铁容器的表面改性。
英文摘要:
      The work aims to solve the problem of short service life of ductile iron containers used for spent fuel storage due to corrosion on the inner wall, and to improve the surface corrosion resistance and wear resistance of ductile iron. Four different alloys, including 316L stainless steel, Ni625 alloy, 410L stainless steel, and NJ30 alloy, were prepared on the surface of ductile iron by powder feeding laser cladding technology. The microstructure, phase composition, element distribution, and corrosion morphology of the cladding layers were characterized by metallographic microscope, scanning electron microscope, and energy dispersive spectrometer. The microhardness and corrosion resistance of the cladding layers were tested by microhardness tester and electrochemical workstation. The results showed that all four cladding layers had good forming quality without cracks or obvious pores, and formed a good metallurgical bond with the substrate. The changes in the microstructure of the cladding layers from the bottom to the top included planar/cellular crystals, dendritic crystals, and equiaxed crystals. However, the middle part of the cladding layers of 316L stainless steel and Ni625 alloy had a smaller grain size. The microhardness of the deposited 316L, Ni625, 410L, and NJ30 was significantly higher than that of the substrate, which was 1.74, 1.92, 2.35, and 2.4 times that of the substrate, respectively. The hardness improvement of the 316L stainless steel and the Ni625 alloy cladding was attributed to solid solution strengthening, while the high hardness martensite phase generated inside the 410L stainless steel cladding and the generation of a large amount of precipitates inside the NJ30 alloy cladding were important reasons for their hardness improvement. According to the research, in a 3.5% NaCl solution, the self-corrosion potential relationship of the four cladding layers was 316L > Ni625 > 410L > NJ30, and the self-corrosion current density increased in turn, indicating that the corrosion resistance of the cladding layers decreased in turn. The results obtained from EIS impedance testing were highly consistent with those obtained from polarization testing. Combined with the results of element analysis, the γ-Fe phase rich in Cr and Ni elements was mainly generated inside the cladding layer of 316L stainless steel, and the γ-(Ni,Fe) solid solution, Cr2Ni3 phase, and M23C6 precipitate were mainly generated inside the cladding layer of Ni625 alloy. The rich Cr and Ni content inside the cladding layer enabled the formation of a higher quality metal passivation film on the surface, effectively improving the corrosion resistance of the material. Under the action of Mo elements, the corrosion resistance of the cladding layer of 316L stainless steel was further improved, and the self-corrosion potential reached the maximum value of the four cladding materials. Finally, the corrosion morphology of the samples showed that the surface of the cladding layer of 410L stainless steel and NJ30 alloy was severely corroded after electrochemical testing, while the surface of the cladding layer of 316L stainless steel and Ni625 alloy was flat and without obvious corrosion marks. In conclusion, the 316L and Ni625 alloy cladding layers have good comprehensive properties and are suitable for improving the surface modification of large ductile iron containers.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22793653位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号