詹中伟,张骐,刘小辉,王帅星,庞志伟,孙志华,葛玉麟,王琪超,杜楠.CeO2颗粒对7075铝合金微弧氧化膜生长行为及耐磨/耐蚀性能的影响[J].表面技术,2024,53(17):71-82.
ZHAN Zhongwei,ZHANG Qi,LIU Xiaohui,WANG Shuaixing,PANG Zhiwei,SUN Zhihua,GE Yulin,WANG Qichao,DU Nan.Effect of CeO2 Particles on Growth Behavior and Wear/Corrosion Resistance of Micro-arc Oxidation Coating on 7075 Aluminum Alloy[J].Surface Technology,2024,53(17):71-82
CeO2颗粒对7075铝合金微弧氧化膜生长行为及耐磨/耐蚀性能的影响
Effect of CeO2 Particles on Growth Behavior and Wear/Corrosion Resistance of Micro-arc Oxidation Coating on 7075 Aluminum Alloy
投稿时间:2023-09-17  修订日期:2024-01-08
DOI:10.16490/j.cnki.issn.1001-3660.2024.17.006
中文关键词:  7075-T6铝合金  微弧氧化  CeO2颗粒  硬度  耐磨性  耐蚀性
英文关键词:7075-T6 aluminum alloy  micro-arc oxidation  CeO2 particles  microhardness  wear resistance  corrosion resistance
基金项目:国家自然科学基金(52261019);江西省主要学科学术和技术带头人培养计划(20204BCJL23033)
作者单位
詹中伟 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
张骐 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
刘小辉 南昌航空大学 材料科学与工程学院,南昌 330063 
王帅星 南昌航空大学 材料科学与工程学院,南昌 330063 
庞志伟 南昌航空大学 材料科学与工程学院,南昌 330063;中国航发西安航空动力控制科技有限公司,西安 710077 
孙志华 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
葛玉麟 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095 
王琪超 南昌航空大学 材料科学与工程学院,南昌 330063 
杜楠 南昌航空大学 材料科学与工程学院,南昌 330063 
AuthorInstitution
ZHAN Zhongwei Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
ZHANG Qi Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
LIU Xiaohui School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
WANG Shuaixing School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
PANG Zhiwei School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China;AECC Xi'an Power Control Technology Corporation, Xi'an 710077, China 
SUN Zhihua Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
GE Yulin Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
WANG Qichao School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
DU Nan School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过CeO2颗粒复合,进一步改善铝合金微弧氧化膜的耐磨和耐蚀性能。方法 在硅酸盐-磷酸盐电解液体系中加入CeO2颗粒,利用微弧氧化技术在7075-T6铝合金表面制备CeO2颗粒复合氧化膜;从氧化电压、放电行为及膜层厚度的变化规律探讨CeO2颗粒含量对微弧氧化膜生长过程的影响;通过扫描电子显微镜、动电位极化曲线、球-盘磨损试验等研究电解液中CeO2颗粒浓度对微弧氧化膜微观结构、耐磨性能和耐蚀性能的影响。结果 通过CeO2颗粒的复合,改变了铝合金微弧氧化成膜过程的能耗分布,加速了微弧氧化膜的放电击穿。CeO2颗粒复合会使膜层的生长速率有所下降,但氧化膜的致密性、均匀性及膜基的结合强度得到明显改善。CeO2颗粒主要以熔融和嵌合等方式存在于氧化膜中。相较于普通微弧氧化膜,复合膜的摩擦因数普遍降低了约0.2,比磨损率也更低,耐磨性更佳。此外,复合膜呈现出更好的耐腐蚀性,其自腐蚀电流密度至少下降了50%,且在模拟海水中浸泡2 000 h后腐蚀增重更小、腐蚀更轻微。在电解液中加入10 g/L的CeO2颗粒时,所得复合膜的综合性能较佳。结论 CeO2颗粒复合以熔融或嵌合的方式沉积到铝合金微弧氧化膜中,有效减少了膜层的微孔等缺陷,提高了膜层的致密性和硬度,改善了膜层的耐蚀性和耐磨性。
英文摘要:
      In order to further improve the wear resistance and corrosion resistance of micro-arc oxidation (MAO) coatings on the 7075-T6 aluminum alloy, CeO2 particles are added to silicate and phosphate a mixed electrolyte system for composite oxidation. The influence of CeO2 particle content on the growth process of MAO coatings is explored from the change laws in oxidation voltage, discharge behavior and film thickness. The surface microstructure, cross-sectional microstructure, and element distribution of MAO coatings prepared in electrolytes with different content of CeO2 particles are analyzed by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The corrosion resistance and wear resistance of different coatings are analyzed through potentiodynamic polarization curves, electrochemical impedance spectroscopy, simulated immersion corrosion tests, and ball disc wear tests. The corrosion and wear mechanisms of MAO/CeO2 composite coatings are also analyzed. The results show that the composite of CeO2 particles changes the energy consumption distribution of the coating-forming process of MAO coatings for 7075 aluminum alloy, accelerates the discharge breakdown and increases the termination voltage of the oxidation process. The total energy consumption of preparing MAO/CeO2 composite coatings is about 60-120 kJ higher than that of preparing ordinary coatings. The addition of CeO2 particles reduces the growth rate of MAO coatings, but is helpful to improve the compactness and bonding strength of MAO coatings. The density of MAO/CeO2 composite coatings is about 5%-20% higher than that of ordinary MAO coatings of equivalent thickness. The critical load when the composite film ruptures is also increased by 1-3 N compared with ordinary oxide coatings. Besides, the microhardness of MAO coatings increases with the increase of the CeO2 particle content in the electrolyte. The CeO2 particles mainly enter into the MAO coatings by melting or embedding. CeO2 particles are mainly melt in the coating in a molten state when the composite amount is low; both molten and particulate CeO2 can be observed within the coatings if the composite amount is high. The composite of CeO2 particles also enhances the wear resistance and corrosion resistance of MAO coatings. Compared with ordinary MAO coatings, the friction coefficient of MAO/CeO2 composite coatings is also generally decreased by about 0.2, only slight abrasive wear is present on the surface after friction, and the specific wear rate is also lower, resulting in better wear resistance. Besides, the self-corrosion current density of MAO/CeO2 composite coatings is also decreased by at least 50%, the corrosion weight gain is smaller and the corrosion is milder after soaking in simulated seawater for 2 000 h. When 10 g/L CeO2 particles are added to the electrolyte, the comprehensive performance of composite oxide coatings is the best, and its corrosion current density and specific wear rate is only 1/10 of those of ordinary oxide coatings. In summary, CeO2 particles in the electrolyte can be melted or embedded into MAO coatings of aluminum alloy, effectively reducing the micropores and defects in MAO coatings, improving the density and microhardness of coatings, and improving the corrosion resistance and wear resistance of MAO coatings.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22793803位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号