龙海洋,史海江,卢冰文,马汝成,闫星辰,刘志存,贵永亮,董真.Si含量对激光熔覆FeCrNiCSix涂层组织结构及高温摩擦性能的影响[J].表面技术,2024,53(17):62-70.
LONG Haiyang,SHI Haijiang,LU Bingwen,MA Rucheng,YAN Xingchen,LIU Zhicun,GUI Yongliang,DONG Zhen.#$NPEffect of Si Content on Microstructure and High Temperature Friction Properties of FeCrNiCSix Coating by Laser Cladding[J].Surface Technology,2024,53(17):62-70
Si含量对激光熔覆FeCrNiCSix涂层组织结构及高温摩擦性能的影响
#$NPEffect of Si Content on Microstructure and High Temperature Friction Properties of FeCrNiCSix Coating by Laser Cladding
投稿时间:2023-08-23  修订日期:2023-12-08
DOI:10.16490/j.cnki.issn.1001-3660.2024.17.005
中文关键词:  激光熔覆  Fe-Cr-Si合金  显微组织  显微硬度  高温磨损  磨损机理
英文关键词:laser cladding  Fe-Cr-Si alloy  microstructure  microhardness  high temperature friction wear  wear mechanism
基金项目:国家自然科学基金(52005113, 52101082, 52201067);广东省科学院打造综合产业技术创新中心行动资金(2022GDASZH- 2022010107);广州市青年科技人才托举项目(QT-2023-038);广东省基础与应用基础研究基金(2022B1515250004);河北省属高校基本科研业务费研究项目(JQN2023029);河北省在读研究生创新能力培养资助项目(CXZZBS2024136);河北省省级科技计划(246Z1019G)
作者单位
龙海洋 华北理工大学,河北 唐山 063210 
史海江 华北理工大学,河北 唐山 063210;广东省科学院新材料研究所广东省现代表面工程技术重点实验室,广州 510651 
卢冰文 广东省科学院新材料研究所广东省现代表面工程技术重点实验室,广州 510651 
马汝成 广东省科学院新材料研究所广东省现代表面工程技术重点实验室,广州 510651 
闫星辰 广东省科学院新材料研究所广东省现代表面工程技术重点实验室,广州 510651 
刘志存 华北理工大学,河北 唐山 063210 
贵永亮 华北理工大学,河北 唐山 063210 
董真 华北理工大学,河北 唐山 063210;广东省科学院新材料研究所广东省现代表面工程技术重点实验室,广州 510651 
AuthorInstitution
LONG Haiyang North China University of Science and Technology, Hebei Tangshan 063210, China 
SHI Haijiang North China University of Science and Technology, Hebei Tangshan 063210, China;Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China 
LU Bingwen Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China 
MA Rucheng Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China 
YAN Xingchen Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China 
LIU Zhicun North China University of Science and Technology, Hebei Tangshan 063210, China 
GUI Yongliang North China University of Science and Technology, Hebei Tangshan 063210, China 
DONG Zhen North China University of Science and Technology, Hebei Tangshan 063210, China;Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究不同Si含量对Fe基涂层组织结构及高温摩擦磨损性能的影响规律,为延长高温环境下冶金部件的服役寿命提供技术支持。方法 选用铬粉、硅粉、镍粉、碳粉、铁粉(纯度均大于等于99%),配制不同Si含量(质量分数分别为5%、10%、15%)的FeCrNiCSix 粉末,在配制完成后使用行星球磨机混合粉末,采用激光熔覆技术制备不同Si含量(质量分数分别为5%、10%、15%)的FeCrNiCSix涂层。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和其自带能谱仪(EDS)分析涂层的物相组成、显微组织和元素分布;利用维氏显微硬度计分析涂层的截面显微硬度分布规律;采用摩擦磨损试验机测试涂层在温度500 ℃、载荷200 N下的摩擦因数,称量磨损实验前后的质量差,计算磨损率;通过SEM观察磨痕形貌,分析涂层磨损机理。结果 质量分数为5%的Si涂层物相主要是γ-Fe和Fe-Cr固溶体,显微组织由树枝晶和等轴晶组成。质量分数为10%、15%的Si涂层的物相主要为Fe3Si、Fe-Cr固溶体,显微组织主要由等轴晶组成。质量分数为5%、10%、15%的Si涂层的显微硬度分别为301.3HV0.5、576.6HV0.5、598.5HV0.5,摩擦因数分别为0.61、0.50、0.47,磨损率分别为3.10×10−5、5.90×10−5、7.39×10−5 g/m。结论 随着涂层中Si含量的升高,涂层的摩擦因数降低,显微硬度和磨损率升高。其中,Fe3Si相的产生使得涂层的平均显微硬度提高,由于Fe3Si相的脆性较大,剥落程度较严重,导致涂层的磨损率上升。综合评判可知,质量分数为10%的Si涂层的高温耐磨最优,其磨损形式为磨粒磨损。
英文摘要:
      After the key parts of metallurgical equipment are used in high temperature environment for a long time, the surface is easy to be damaged. In high temperature environment, the Fe-Cr-Si alloy coating can protect the substrate from high temperature gases, oxides and corrosive media, while providing high hardness and wear resistance. Therefore, it is widely used for surface protection of service parts in high temperature, high corrosion and high wear environments. At present, the main research pays more attention to Fe-Cr-Si coatings with low Si content, and less to Fe-Cr-Si coatings with high Si content. The coating prepared by laser cladding technology has the advantages of metallurgical bonding, low dilution rate, small heat-affected zone and dense microstructure. The preparation of protective coating by laser cladding technology is a suitable way to improve the service life of parts. The work aims to solve the problem of surface failure of metallurgical parts in high temperature environment and investigate the effect of Si content on the high temperature wear performance of Fe-based coatings. Therefore, chromium powder, silicon powder, nickel powder, carbon powder and iron powder (purity≥99%) were used to prepare alloy powder. The Si content of the alloy powder was 5%, 10% and 15%. The finished powder was mixed with a star ball mill. After mixing, the powder was dried in a vacuum drying oven at 100 ℃ for 2 h. The process parameters of laser cladding were as follows:laser power of 1 600 W, lap rate of 50%, spot diameter of 5 mm, scanning speed of 600 mm/min and powder feeding speed of 5 r/min. The base material was 1Cr11Ni2W2MoV heat-resistant steel plate. The phase composition of the coating was analyzed by X-ray diffractometer. The microstructure of the coating and its element distribution were analyzed by scanning electron microscope (SEM) and its own energy dispersive spectrometer (EDS). The friction and wear properties of coatings with different Si contents were tested by friction and wear testing machine at 500 ℃, and the friction coefficient curve and wear mechanism of coatings were analyzed. Si could improve the oxidation resistance of the coating and refine the grain. With the increase of Si content, the coating produced Fe3Si phase, the microhardness increased, the friction coefficient decreased, and the wear rate increased. The reason for the increase of coating wear rate was that Fe3Si had phase brittleness, so the degree of spalling was larger. The phase of 5% Si coating was γ-Fe and Fe-Cr solid solution, and the microstructure was mainly isometric crystal and dendrite, the average microhardness was 304.3HV0.5, the average friction coefficient was 0.61, the wear rate was 3.10×10−5 g/m, and the wear form was mainly adhesive wear. The phase of 10% Si and 15% Si coatings was Fe3Si and Fe-Cr solid solution, the microstructure was mainly equiaxial and the wear form was mainly spalling wear. The average microhardness of 10% Si coating was 576.6HV0.5, the average friction coefficient was 0.50, and the wear rate was 5.90×10−5 g/m. The average microhardness of 15% coating was 598.5HV0.5, the average friction coefficient was 0.47, and the wear rate was 7.39×10−5 g/m.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22793957位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号