郭时毅,安江峰,吴军,郑鹏华.风力发电机叶片覆冰机理及防除冰技术研究进展[J].表面技术,2024,53(12):50-65.
GUO Shiyi,AN Jiangfeng,WU Jun,ZHENG Penghua.Research Progress of Wind Turbine Blade Ice-covering Mechanism and Anti-icing Technology[J].Surface Technology,2024,53(12):50-65
风力发电机叶片覆冰机理及防除冰技术研究进展
Research Progress of Wind Turbine Blade Ice-covering Mechanism and Anti-icing Technology
投稿时间:2023-07-26  修订日期:2024-01-04
DOI:10.16490/j.cnki.issn.1001-3660.2024.12.004
中文关键词:  风力发电机  叶片  覆冰机理  防除冰  组合策略
英文关键词:wind turbine  blade  ice-covering mechanism  anti-icing and deicing  combined strategy
基金项目:科技基础资源调查专项(2021FY100600)
作者单位
郭时毅 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030 
安江峰 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;湖北武汉大气淡水环境材料腐蚀国家野外科学观测研究站,武汉 430030 
吴军 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;新疆尉犁大气环境材料腐蚀国家野外科学观测研究站,新疆 尉犁 841500 
郑鹏华 中国机械总院集团武汉材料保护研究所有限公司,武汉 430030;湖北武汉大气淡水环境材料腐蚀国家野外科学观测研究站,武汉 430030 
AuthorInstitution
GUO Shiyi Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China 
AN Jiangfeng Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China 
WU Jun Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Yuli Materials Corrosion National Observation and Research Station, Xinjiang Yuli 841500, China 
ZHENG Penghua Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China 
摘要点击次数:
全文下载次数:
中文摘要:
      在“双碳”政策下,绿色能源在能源体系中的占比越来越大。风力发电以其原料来源广、污染少、发电量大等优点成为国家重点发展的方向之一。随着风力发电的快速发展,风力发电机覆冰问题愈发凸显。为了解决这一问题,研究人员基于生物仿生学开发了具有优异防除冰性能的超疏水涂层,并广泛应用。目前,防止风机结冰最常用和最直接的方法是主动加热技术。综述了风力发电机覆冰的基本理论,介绍了覆冰产生的原因及危害,将覆冰抽象为过冷水滴在下降过程中撞击风力发电机叶片并黏附在叶片上,与叶片表面发生复杂热交换后凝结成冰的模型。概述了目前国内外常用的风力发电机防除冰方法,分析了不同被动和主动防除冰技术的优缺点。通过研究工程应用案例发现,单一的被动或主动防除冰技术存在防除冰能力有限、能耗高、效率低等问题,将不同的防除冰技术组合使用、互相补充,更能满足多样化实践需求,成为目前研究的热点和重点。在优化当前防除冰技术的基础上,采用组合防除冰技术具有良好的发展前景。
英文摘要:
      ed as a model in which supercooled water droplets hit the wind turbine blades during the descent process and successfully adhered to the blades, and then conducted complex heat exchange with the blade surfaces and finally condensed into ice. The phenomenon of wind turbine icing was Abstracted as a model. In the descending process, supercooled water droplets hit the wind turbine blades and attached to the blades, where they exchanged heat with the blade surfaces in a very complicated way and then condensed into ice. In the next place, the commonly used anti-icing and deicing methods for wind turbines at home and abroad were outlined. Then the advantages and disadvantages of different passive and active anti-icing and deicing techniques and their application range were analyzed and compared in detail. Superhydrophobic coatings with excellent anti-icing and deicing properties developed by researchers based on biomimicry studies have gained wide application. Active heating is currently the most direct and the most widely used method of preventing wind turbines from icing. Research cases and engineering applications show that the existing single passive or active anti-icing and deicing technology has limited anti-icing and deicing capacity, high energy consumption, low efficiency and other serious problems. A serious problem with using only superhydrophobic coatings is that ice buildup is difficult to handle once it is formed. Active heating can de-ice very directly, but it consumes high energy and wastes resources; while mechanical de-icing is low-cost but inefficient. Although active de-icing is mostly used, some of its methods are technically immature and may be developed in the future. Researchers use the combination of different anti-icing technologies and the complementarity of different methods to better meet the diversified needs of practice and solve the icing problem of wind turbines in different complex environments. This makes the combination strategy become the hot spot and focus of current research. Based on the optimization of the current anti-icing and deicing technology, the combined anti-icing and deicing technology has a good development prospect and the challenge will be gradually solved.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22793941位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号