欧阳雨舟,陈爽,黄艳斐,邢志国,郭伟玲.钛酸铋钠基压电材料制备技术研究进展[J].表面技术,2024,53(10):56-70.
OUYANG Yuzhou,CHEN Shuang,HUANG Yanfei,XING Zhiguo,GUO Weiling.Research Progress of Sodium Titanate Based Piezoelectric Material Preparation Technology[J].Surface Technology,2024,53(10):56-70
钛酸铋钠基压电材料制备技术研究进展
Research Progress of Sodium Titanate Based Piezoelectric Material Preparation Technology
投稿时间:2023-05-29  修订日期:2024-03-14
DOI:10.16490/j.cnki.issn.1001-3660.2024.10.005
中文关键词:  无铅陶瓷  钛酸铋钠  制备技术  热喷涂  涂层
英文关键词:lead-free ceramics  sodium bismuth titanate  preparation technology  thermal spraying  coating
基金项目:国家自然科学基金(52005511);江西省教育厅科学技术研究项目(GJJ2200801)
作者单位
欧阳雨舟 江西理工大学 机电工程学院,江西 赣州 3410003;陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
陈爽 江西理工大学 机电工程学院,江西 赣州 3410003 
黄艳斐 陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
邢志国 陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
郭伟玲 陆军装甲兵学院 装备再制造技术国防科技重点实验室,北京 100072 
AuthorInstitution
OUYANG Yuzhou School of Mechanical and Electrical Engineering, Jiangxi University of Technology, Jiangxi Ganzhou 341003, China;National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China 
CHEN Shuang School of Mechanical and Electrical Engineering, Jiangxi University of Technology, Jiangxi Ganzhou 341003, China 
HUANG Yanfei National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China 
XING Zhiguo National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China 
GUO Weiling National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China 
摘要点击次数:
全文下载次数:
中文摘要:
      钛酸铋钠(BNT)基压电材料因具有较好的电学性能以及高居里温度等优点,成为了压电材料领域的研究热点之一。如何制备出性能优异的钛酸铋钠基压电材料,是满足各个领域应用要求的重要环节。重点综述了近年来钛酸铋钠基压电材料制备技术的研究进展,从固相烧结、放电等离子烧结以及微波烧结等角度对其烧结技术进行论述;从溶胶-凝胶、脉冲激光沉积和射频磁控溅射等角度对其薄膜制备技术进行综述;对热喷涂制备压电涂层的机理和工艺进行总结。结果表明,烧结温度是影响块体材料结构和性能的关键因素,其中放电等离子烧结与微波烧结相较于传统的固相烧结能够有效控制材料的烧结温度;在钛酸铋钠薄膜的制备中对沉积温度、氧气压力以及退火温度的控制可以有效提高薄膜电学性能;热喷涂制备的钛酸铋钠涂层通过热处理工艺能够改善涂层的电学性能,并且热喷涂能够在复杂零件表面实现压电涂层的可控制备,其中钛酸铋钠压电陶瓷薄膜和涂层的制备扩展了其应用范围。最后,展望了压电陶瓷材料技术的未来发展趋势,为压电材料制备技术的研究提供了一定的参考。
英文摘要:
      Sodium bismuth titanate (BNT) based piezoelectric ceramics have gained prominence in the field of piezoelectric materials due to their favorable electrical properties and high Curie temperature. The preparation of high-performance bismuth sodium titanate based piezoelectric ceramics is crucial for meeting diverse application requirements. The BNT piezoelectric ceramic materials are initially classified into block sintering, thin film, and coating types. An examination of recent sintering, thin film, and coating techniques objectively highlights the differences in BNT ceramics prepared through various methods. The current research status on different preparation technologies for piezoelectric ceramics is then discussed, shedding light on existing research gaps and providing innovative perspectives. The prospects for piezoelectric ceramics preparation technology are outlined, indicating future development directions for various techniques. The primary affecting factors in the sintering technology of BNT piezoelectric ceramics are identified as sintering temperature and time. Solid-state sintering, with its high temperature, poses challenges due to element volatilization, addressed by adding doping oxide combustion aids. However, the research in this area is limited to oxide addition, without exploring its impact on performance. Spark plasma sintering technology is noted for reducing nanodomain size and increasing its number, enhancing piezoelectric properties. Combining this with the powder preparation process is suggested to achieve nanoscale ceramics in the future. Microwave sintering, utilizing electric field self-heating, can produce ceramics with uniform size distribution and high density. However, the material-specific microwave absorption ability may lead to varying performance, necessitating further research. In the realm of BNT piezoelectric ceramic thin films, the Sol-gel method offers simplicity and material composition control. However, the film thickness control remains challenging, limiting its performance. Pulsed Laser Deposition is explored, where oxygen pressure, substrate temperature, and heat treatment affect thin film structure and performance. Optimization is crucial to address potential issues with molten particles and fragments. RF Magnetron Sputtering's control of annealing temperature and RF frequency affects grain size, density, and performance. This technology holds prospect for achieving controllable BNT thin film preparation, which is significant for new thin film materials. The focus of BNT coating research is on thermal spraying, boasting high efficiency and large-area preparation. Challenges include part-wise sintering difficulties and film performance affected by thickness. BNT piezoelectric ceramics, combining lead-free properties with thermal spraying, may find applications in advanced intelligent systems and monitoring systems for sensors and transducers. Future research should leverage simulation and experimental methods to delve into the forming mechanisms of piezoelectric ceramics in different preparation technologies and explore avenues for performance improvement, thereby advancing piezoelectric ceramics preparation technology.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第23499229位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号