吴金津,王旭,袁巨龙,苑泽伟,王安静,陈聪.轴承内圆轴向超声高速磨削理论建模与试验研究[J].表面技术,2024,53(8):119-132.
WU Jinjin,WANG Xu,YUAN Julong,YUAN Zewei,WANG Anjing,CHEN Cong.Theoretical Modeling and Experimental Research on Axial Ultrasonic High Speed Grinding of Bearing Inner Circle[J].Surface Technology,2024,53(8):119-132
轴承内圆轴向超声高速磨削理论建模与试验研究
Theoretical Modeling and Experimental Research on Axial Ultrasonic High Speed Grinding of Bearing Inner Circle
投稿时间:2023-06-16  修订日期:2023-10-09
DOI:10.16490/j.cnki.issn.1001-3660.2024.08.011
中文关键词:  轴向超声内圆磨削  高速  去除量  磨粒轨迹  表面质量
英文关键词:axial ultrasonic inner circle grinding  high speed  removal amount  abrasive trajectory  surface quality
基金项目:国家自然科学基金(51935008,52275467,U20A20293);浙江省自然科学基金(LY21E050010)
作者单位
吴金津 浙江工业大学 机械工程学院超精密加工研究中心,杭州 310023;新昌浙江工业大学 科学技术研究院,浙江 新昌 312500 
王旭 浙江工业大学 机械工程学院超精密加工研究中心,杭州 310023;新昌浙江工业大学 科学技术研究院,浙江 新昌 312500;沈阳工业大学 机械工程学院,沈阳 110000 
袁巨龙 浙江工业大学 机械工程学院超精密加工研究中心,杭州 310023;新昌浙江工业大学 科学技术研究院,浙江 新昌 312500 
苑泽伟 沈阳工业大学 机械工程学院,沈阳 110000 
王安静 浙江工业大学 机械工程学院超精密加工研究中心,杭州 310023;新昌浙江工业大学 科学技术研究院,浙江 新昌 312500 
陈聪 浙江工业大学 机械工程学院超精密加工研究中心,杭州 310023;新昌浙江工业大学 科学技术研究院,浙江 新昌 312500 
AuthorInstitution
WU Jinjin Ultra-precision Machining Center, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Xinchang Research Institute of ZJUT, Zhejiang Xinchang 312500, China 
WANG Xu Ultra-precision Machining Center, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Xinchang Research Institute of ZJUT, Zhejiang Xinchang 312500, China;School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110000, China 
YUAN Julong Ultra-precision Machining Center, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Xinchang Research Institute of ZJUT, Zhejiang Xinchang 312500, China 
YUAN Zewei School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110000, China 
WANG Anjing Ultra-precision Machining Center, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Xinchang Research Institute of ZJUT, Zhejiang Xinchang 312500, China 
CHEN Cong Ultra-precision Machining Center, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;Xinchang Research Institute of ZJUT, Zhejiang Xinchang 312500, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 以GCr15材料的6309型轴承内圆为研究对象,探究高转速超声磨削过程中超声辅助振动对磨粒运动轨迹、磨削后表面粗糙度、圆度以及微观形貌的影响规律。方法 基于超声内圆磨削磨粒切削轨迹及超声振幅与砂轮转速对轨迹影响的理论仿真,构建磨削去除量与磨削表面粗糙度的理论模型,通过对轴承内圆进行超声磨削试验,研究高转速(16 000~22 000 r/min)下各工艺参数对内圆表面质量的影响并验证理论粗糙度评价模型。结果 超声振幅的增大使磨粒与内圆接触轨迹变长,但随砂轮转速的提高,磨粒切削轨迹的密集程度也有所下降。振幅和砂轮转速的增大可使切削去除量增大、粗糙度降低,铬刚玉粒度100#陶瓷结合剂砂轮磨削GCr15轴承内圆后,其表面质量更有优势,单因素下表面质量变化趋势与理论分析结果相一致。结论 在相同磨削参数下,1.5 μm振幅超声磨削可使内圆圆度降至0.92 μm,粗糙度降至130.5 nm,与传统磨削相比,粗糙度最高减小了41.5%,圆度最高减小了52.6%。在高转速下,各因素按砂轮对磨削后表面质量的影响由大到小的顺序依次为砂轮转速、超声振幅、进给速度,当磨粒线速度超过41.8 m/s、进给速度超过600 mm/min、振幅超过1.5 μm时,表面质量呈下降趋势。
英文摘要:
      Taking 6309 bearing inner circle of GCr15 material as the research object, the influence law of ultrasonic assisted vibration on abrasive grain motion trajectory, surface roughness, roundness and micro-morphology during high speed ultrasonic grinding was investigated. Based on the theoretical simulation of the abrasive grain cutting trajectory of ultrasonic inner circle grinding and the influence of ultrasonic amplitude and grinding wheel speed on the trajectory, a theoretical model of grinding removal and grinding surface roughness was established to analyze the changing trends of surface quality and grinding efficiency during high speed grinding. Through an ultrasonic grinding test on the bearing inner circle, the influence of process parameters on inner circle surface quality at high speed (16 000-22 000 r/min) was studied and the theoretical model was verified. The contact trajectory between the abrasive grain and the inner circle became longer with the increase of the ultrasonic amplitude, but the intensity of the abrasive grain cutting trajectory also decreased with the increase of the grinding wheel speed. The increase of the ultrasonic amplitude and the grinding wheel speed could increase the cutting removal and reduce the roughness. Compared with brown corundum and white corundum with the same parameters, the surface quality of the GCr15 bearing after grinding the inner circle with a chrome corundum 100# ceramic bonding wheel was superior, and the variation trend of surface quality under a single factor was consistent with the theoretical analysis. In conclusion, with the same grinding parameters, ultrasonic grinding with 1.5 μm amplitude can reduce the inner roundness to 0.92 μm and the roughness to 130.5 nm, which can reduce the roughness up to 41.5% and roundness up to 52.6% compared with the traditional grinding with the same parameters. Through the orthogonal test, it is concluded that the factors that have a great influence on the surface quality after grinding at high speed of the grinding wheel are as follows:grinding wheel speed, ultrasonic amplitude, feed speed. The optimal grinding process for this research object at high speed is as follows:grinding wheel speed 20 000 r/min, radial feed speed 600 mm/min, axial amplitude 1.5 μm, workpiece rotation 250 r/min, grinding depth 20 μm. Based on the optimal process obtained by orthogonal test, single factor tests are carried out on grinding wheel speed, ultrasonic amplitude and feed speed. According to the decline percentage of the single factor tests, the improvement effect of ultrasonic grinding on surface quality increases with the increase of grinding wheel speed when the speed is less than 20 000 r/min, and decreases with the increase of rotating speed when the speed is more than 20 000 r/min. When the radial feed speed of the workpiece is less than 600 mm/min, the improvement effect of ultrasonic grinding on the surface quality increases with the increase of the feed speed, and decreases with the increase of the feed speed when the radial feed speed is more than 600 mm/min. When the axial ultrasonic amplitude is applied to 6 μm, a sinusoidal vibration pattern will appear on the surface after grinding and the grinding effect will be weakened, while the uniform surface texture after 1.5 μm grinding can effectively reduce the cracks caused by high speed grinding.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第30481543位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号