何佳琪,乔红超,张楠楠,赵吉宾,陆莹,杨玉奇.激光冲击强化对镍基单晶高温合金SRR99组织及性能的影响[J].表面技术,2024,53(7):146-155.
HE Jiaqi,QIAO Hongchao,ZHANG Nannan,ZHAO Jibin,LU Ying,YANG Yuqi.Effect of Laser Shock Peening on Microstructure and Properties of Nickel-based Single Crystal Superalloy SRR99[J].Surface Technology,2024,53(7):146-155
激光冲击强化对镍基单晶高温合金SRR99组织及性能的影响
Effect of Laser Shock Peening on Microstructure and Properties of Nickel-based Single Crystal Superalloy SRR99
投稿时间:2023-02-22  修订日期:2023-05-23
DOI:10.16490/j.cnki.issn.1001-3660.2024.07.015
中文关键词:  激光冲击强化  单晶高温合金  力学性能  残余应力  微观组织
英文关键词:laser shock peening  single crystal superalloy  mechanical properties  residual stress  microstructure
基金项目:国家自然科学基金(51875558);国家重点研发计划(2022YFB4601600)
作者单位
何佳琪 沈阳工业大学 材料科学与工程学院,沈阳 110870;中国科学院沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016 
乔红超 中国科学院沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016 
张楠楠 沈阳工业大学 材料科学与工程学院,沈阳 110870 
赵吉宾 中国科学院沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016 
陆莹 中国科学院沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016 
杨玉奇 中国科学院沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016 
AuthorInstitution
HE Jiaqi School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
QIAO Hongchao State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
ZHANG Nannan School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 
ZHAO Jibin State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
LU Ying State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
YANG Yuqi State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决镍基单晶高温合金航空发动机涡轮叶片在服役时发生表面损伤的问题,探究激光冲击强化对镍基单晶高温合金SRR99的强化变形机制。方法 采用高功率(8 J)短脉冲激光分别对试样进行1、2、3次表面强化,使用白光干涉仪、显微硬度仪、X射线分析仪对强化前后的镍基单晶高温合金试样表面形貌、粗糙度、显微硬度、残余应力进行测试,通过扫描电子显微镜、透射电子显微镜和X射线衍射仪分析激光冲击强化对镍基单晶高温合金微观组织和物相组成的影响。结果 经过1、2、3次激光冲击后,单晶高温合金试样表面发生了塑性变形,表面凹坑随着冲击次数的增加逐渐加深,表面粗糙度分别为1.566、1.868、2.265 μm,显微硬度分别增加了15.3%、25.8%、32.1%,表面残余压应力分别提高为–790、–870、–917 MPa。经强化后,试样表层形成了畸变层,γ′相的面积和体积分数均增大,合金未发生相变,但两相发生了严重的晶格畸变,晶格常数和晶面间距的变化导致两相晶格发生失配,经强化后在试样表层γ′强化相、γ通道、γ/γ′界面观察到大量位错结构,此外还观察到贯穿γ′相、γ相的位错滑移带和致密的位错网络。结论 激光冲击强化技术可使镍基单晶高温合金SRR99发生塑性变形,在其表层内部形成高密度位错网络结构,加工硬化效果显著,提高了基体表面的显微硬度和残余应力。
英文摘要:
      Laser shock peening is considered to be one of the most effective means to improve the fatigue life of engine blades, which can improve the oxidation resistance, fatigue resistance and corrosion resistance of metal materials. Nickel-based single crystal superalloy is widely used in the manufacture of aeroengine and gas turbine blades because of its excellent high temperature strength, oxidation resistance and corrosion resistance. However, as engine blades work at high temperature, high pressure and high speed for a long time, the surface of the blades is prone to fatigue cracks, leading to high-cycle fatigue fracture of engine blades. The purpose of this work is to solve the problem of surface damage caused by nickel-based single crystal superalloy engine blades in use, and to explore the mechanism of laser shock peening of nickel-based single crystal superalloy SRR99. The samples of nickel-based single crystal superalloy were treated with one, two and three times shot peening respectively by 8 J high power short pulse laser. The spot size was 3 mm, the binding rate was 50% and the pulse width was 15 ns. The surface morphology and roughness, microhardness and residual stress of single crystal superalloy peened by laser shock were measured by white light interferometer, microhardness tester and X-ray analyzer. The effects of laser shock peening on surface morphology, roughness, microhardness and residual stress of nickel base single crystal superalloy were analyzed. The microstructure, dislocation structure and phase composition of the single crystal superalloy were observed by scanning electron microscope, transmission electron microscope and X-ray diffractometer. The surface microstructure and phase composition of the single crystal superalloy peened by laser shock were discussed, and the plastic deformation mechanism of the single crystal superalloy peened by laser shock was analyzed. After 1, 2, and 3 laser shocks, the surface of single crystal superalloy samples had serious plastic deformation. With the increase of the impact times, the pits on the surface of single crystal alloy were gradually deepened, and the surface roughness increased from 0.107 μm to 1.566, 1.868, 2.265 μm. The microhardness was increased by 15.3%, 25.8% and 32.1% respectively, and the surface residual compressive stress was increased to −790, −870, −917 MPa. After shot peening, a distorted layer was formed on the surface of the sample, and the area value and volume fraction of γ' phase increased. No phase transformation occurred, but the crystal lattice distortion occurred in the two phases, and the change of lattice constant and crystal plane spacing lead to the mismatch of the two phases. The higher the impact times, the greater the mismatch degree of the two phases, the stronger the dislocation structure of the strengthened γ' phase and γ channel on the surface of the sample, the stronger the dislocation interaction at the γ/γ' interface. And a lot of dislocation entanglement is accumulated. In addition, through the cross dislocation slip band of the γ' phase and γ' phase, the formation of a dense dislocation network inhibits the dislocation movement and improves the plastic deformation resistance of single crystal superalloy. It also produces obvious work hardening effect, which is the main deformation mechanism of nickel base single crystal superalloy SRR99 laser shock peening.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22793717位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号