胡琼,卢迪,肖洋,王晓雷,王衍,张庆硕,朱先磊.基于槽区表面纹理化改性的液膜密封性能提升方法[J].表面技术,2022,51(7):150-160. HU Qiong,LU Di,XIAO Yang,WANG Xiao-lei,WANG Yan,ZHANG Qing-shuo,ZHU Xian-lei.Method for Improving Liquid Film Seal Performance Based on Groove Surface Texture Modification[J].Surface Technology,2022,51(7):150-160 |
基于槽区表面纹理化改性的液膜密封性能提升方法 |
Method for Improving Liquid Film Seal Performance Based on Groove Surface Texture Modification |
|
DOI:10.16490/j.cnki.issn.1001-3660.2022.07.014 |
中文关键词: 液膜密封 微纹理 导流 密封性能 超滑水表面 |
英文关键词:liquid film seal micro texture diversion sealing performance super-slippery surface |
基金项目:国家自然科学基金(52105187);江苏省研究生科研创新计划(KYCX2021?047) |
|
Author | Institution |
HU Qiong | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China;National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China |
LU Di | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China |
XIAO Yang | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China |
WANG Xiao-lei | National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China |
WANG Yan | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China |
ZHANG Qing-shuo | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China |
ZHU Xian-lei | Jiangsu Ocean Univesity, Jiangsu Lianyungang 222005, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 对传统液膜密封槽区的表面进行微观有序纹理化改性,以期调节微尺度流动,提高密封综合性能。方法 根据流动因子ξ判断密封端面间流体流动状态,采用有限体积法数值模拟密封稳态性能,对比现有文献验证算法的正确性;对比研究不同几何、工况参数下,有、无表面微纹理设计的密封开启力和泵送率的变化规律,研究槽区纹理对密封性能的影响机理。结果 采用槽区纹理化改性在提高密封间隙流体静压的同时,还可实现方向性导流,增强流体动压;在纹理方向与流场方向高度一致时(在所研究工况下,α为10º~15º),可表现出良好的导流效果;通过增加纹理密度(用纹理数量表示,n)或增大纹理宽间比(Bm/Cm),适当调小纹理间距Cm,可使导流效应增强;通过微纹理设计不会改变槽型参数的优化结果,存在较宽的纹理结构参数区间,使有纹理的密封性能较无微纹理的更优;有纹理密封在高速、大槽深时的维稳和抑漏效果更好。结论 在液膜密封槽区表面合理设计有序微纹理,可在槽型结构已较优的基础上,进一步提升液膜开启力、降低泄漏率。依据分析结果,提出“在流场与流体型槽方向高度匹配的前提下,设计超滑水槽区表面能够大幅提升液膜密封开启性能和泵送能力”的设想。 |
英文摘要: |
The paper aims to modify the groove surface of traditional liquid film seal by micro ordered texture to adjust the micro scale flow and improve the comprehensive performance of the seal. The fluid flow state between seal end faces is confirmed according to the flow factor ξ, the steady-state performance of the seal is numerically simulated by the finite volume method, and the correctness of the algorithm is verified by comparing with the existing literature; the variation laws of opening force and pumping rate with and without surface micro-texture design under different geometric and working parameters are systematically compared, and the influence mechanism of groove texture on seal performance is explained. The results show that the textured groove can not only improve the hydrostatic pressure in the sealing gap, but also realize directional diversion and enhance the hydrodynamic pressure; when the texture is extremely consistent with the flow direction of the fluid (under the present working conditions, α=10º-15º), it can show a good diversion effect; by increasing the texture density, n, or increasing the ratio of texture width and spacing, Bm/Cm, to properly reduce the texture spacing, Cm, can enhance the diversion effect; micro-texture design will not change the optimization results of groove parameters, and there is a wide range of texture structure parameters, which makes the sealing performance with texture better than that without micro texture; textured seal has better stability maintenance and leakage suppression effect at high speed and large groove depth. Reasonable design of ordered micro texture on the surface of liquid film seal groove region can further effectively improve the opening force of liquid film and reduce the leakage rate on the basis of better groove structure. According to the analysis results, the assumption that "the super- slippery surface design of groove can greatly improve the opening performance and pumping capacity of the liquid film seal on the premise that the flow field is highly matched with the direction of the fluid groove" is put forward. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|