毛晓敏,刘涛,郭娜,郭章伟,董丽华.模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为[J].表面技术,2022,51(6):36-47.
MAO Xiao-min,LIU Tao,GUO Na,GUO Zhang-wei,DONG Li-hua.Corrosion Behavior of Marine Low Alloy Steel under the Condition of Multi-factor Coupling in Simulated Arctic Route[J].Surface Technology,2022,51(6):36-47
模拟北极航线多因素耦合条件下船用低合金钢的腐蚀行为
Corrosion Behavior of Marine Low Alloy Steel under the Condition of Multi-factor Coupling in Simulated Arctic Route
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.06.004
中文关键词:  微生物腐蚀  低合金钢  点蚀  生物矿化  环境交变
英文关键词:microbiological corrosion  low alloy steel  pitting corrosion  biomineralization  the alternating environment
基金项目:国家自然科学基金(41976039,42006039,51901127);上海市自然科学基金(19ZR1422100)
作者单位
毛晓敏 上海海事大学,上海 201306 
刘涛 上海海事大学,上海 201306 
郭娜 上海海事大学,上海 201306 
郭章伟 上海海事大学,上海 201306 
董丽华 上海海事大学,上海 201306 
AuthorInstitution
MAO Xiao-min Shanghai Maritime University, Shanghai 201306, China 
LIU Tao Shanghai Maritime University, Shanghai 201306, China 
GUO Na Shanghai Maritime University, Shanghai 201306, China 
GUO Zhang-wei Shanghai Maritime University, Shanghai 201306, China 
DONG Li-hua Shanghai Maritime University, Shanghai 201306, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究船舶低合金钢在模拟南海到北极的航行过程中的腐蚀情况,探索它在环境交变条件下的腐蚀行为与机理。方法 选用3种温度(37、25、4 ℃)及相对应的典型海洋细菌,包括大西洋假交替单胞菌(Pseudoalteromonas atlantica)、需钠弧菌(Vibrio natriegens)和养料嗜冷杆菌(Psychrobacter cibarius),模拟航行往返过程中海洋环境的变化情况,以21 d为一个实验周期,每7 d改变一次温度和细菌种类,采用扫描电镜(SEM)、白光干涉、失重法和电化学测试方法从宏观和微观两方面对材料的腐蚀行为进行表征分析。同时,将相同的低合金钢试样浸泡在无菌海水中进行对照实验。结果 浸泡在无菌海水中,当初始温度为37 ℃时,低合金钢的初始腐蚀速率较大;随着温度的降低和时间的延长腐蚀速率逐渐减小;当初始温度为4 ℃时,低合金钢的点蚀情况较严重,但腐蚀速率变化不大。浸泡在有菌海水中,初始温度为37 ℃时,低合金试样表面有大量方解石结构的碳酸钙镁盐沉积,从而较好地抑制了均匀腐蚀和点蚀的发生;当初始温度为4 ℃时,低合金钢试样表面点蚀严重,EDS能谱分析证明低合金钢试样在低温环境中没有明显的碳酸钙镁盐沉积。结论 初始海水温度和细菌种类的不同会造成船用低合金钢腐蚀行为的极大差异,其原因主要是高温下细菌会诱导产生碳酸钙镁盐,并在低合金钢试样表面沉积,从而明显抑制了腐蚀;在低温环境下,细菌难以诱导碳酸钙镁盐的沉积,试样的均匀腐蚀和点蚀会非常严重,一旦发生腐蚀,即便后期再形成矿化产物膜也难以起到良好的防护作用。
英文摘要:
      This study aims to investigate the corrosion of low alloy steel during the simulated voyage from the South China Sea to the North Pole, and to explore the corrosion mechanism under the alternating environmental conditions. Three temperatures (37 ℃, 25 ℃, 4 ℃) and corresponding typical marine bacteria were selected, including Pseudoalteromonas atlantica, Vibrio natriegens and Psychrobacter cibarius. The change of Marine alternating environment during voyage and round trip was simulated. The experiment cycle was 21 days, and the temperature and bacteria species were changed every 7 days. Scanning electron microscopy (SEM), a three-dimensional (3D) optical profilometer, weight loss method and electrochemical test methods were used to characterize and analyze the corrosion behavior of materials from both macro and micro aspects. Meanwhile, the same low alloy steel samples were immersed in sterile seawater for the control experiment. In abiotic seawater, from 37 ℃ to 4 ℃, the corrosion rate of low alloy steel decreased significantly. From 4 ℃ to 37 ℃, the pitting corrosion of low alloy steel is more serious, but the corrosion rate changed inapparently. In the biotic seawater, from 37 ℃ to 4 ℃, a large amount of calcium carbonate and magnesium salt were deposited on the surface of the low-alloy sample, thereby inhibiting the uniform and pitting corrosion significantly. However, from 4 ℃ to 37 ℃, the surface of the low-alloy steel sample showed serious corrosion, and serious pitting corrosion was found after removing the corrosion products. X-ray energy dispersive spectroscopy (EDS) proved that the calcium and magnesium carbonates were not deposited on the steel surfaces under low-temperature environment. Therefore, the difference of initial seawater temperature and bacteria species can cause great difference in the corrosion behavior of marine low-alloy steel. The main reason is that bacteria can induce the deposition of calcium and magnesium carbonate on the surface of low-alloy steel samples at high temperature, which can obviously inhibit the corrosion. However, under low temperature environment, P. cibarius can hardly induce calcium and magnesium carbonate deposition, and the uniform corrosion and pitting corrosion of samples will be very serious. Once corrosion occurs, it is difficult to play a good protective role even if the mineralized product film is formed later.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26666312位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号