洪世豪,郑达敏,马亮,李绍元,陈秀华,马文会.双氧水在铜纳米粒子催化刻蚀n型单晶硅中的影响研究[J].表面技术,2022,51(1):257-264.
HONG Shi-hao,ZHENG Da-min,MA Liang,LI Shao-yuan,CHEN Xiu-hua,MA Wen-hui.Study on the Influence of Hydrogen Peroxide on Nano-Cu Catalyzed Etching of n-Type Single Crystal Silicon[J].Surface Technology,2022,51(1):257-264
双氧水在铜纳米粒子催化刻蚀n型单晶硅中的影响研究
Study on the Influence of Hydrogen Peroxide on Nano-Cu Catalyzed Etching of n-Type Single Crystal Silicon
投稿时间:2020-12-26  修订日期:2021-09-29
DOI:10.16490/j.cnki.issn.1001-3660.2022.01.027
中文关键词:  铜纳米颗粒  刻蚀速率  反射率  倒金字塔  铜催化化学刻蚀
英文关键词:copper nanoparticle  etching rate  reflectivity  inverted pyramid  copper-catalyzed chemical etching
基金项目:国家自然科学基金(51974143,51904134);云南省科技重大专项(2019ZE007);云南省重点研发计划(202103AA080004,202102AB080016)
作者单位
洪世豪 昆明理工大学 冶金与能源工程学院,昆明 650093 
郑达敏 湖南红太阳光电科技有限公司,长沙 410205 
马亮 昆明理工大学 冶金与能源工程学院,昆明 650093 
李绍元 昆明理工大学 冶金与能源工程学院,昆明 650093 
陈秀华 云南大学 材料与能源学院,昆明 650091 
马文会 昆明理工大学 冶金与能源工程学院,昆明 650093 
AuthorInstitution
HONG Shi-hao School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 
ZHENG Da-min Hunan Red Sun Optoelectronic Technology Co., Ltd., Changsha 410205, China 
MA Liang School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 
LI Shao-yuan School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 
CHEN Xiu-hua School of Materials and Energy, Yunnan University, Kunming 650091, China 
MA Wen-hui School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 在反应速率温和的前提下,在n型单晶硅片表面制备低反射率的纳米倒金字塔绒面,研究H2O2浓度对铜纳米颗粒的沉积及刻蚀行为的影响。方法 利用铜纳米粒子催化刻蚀方法对金刚线切割n型单晶硅进行表面织构化处理,利用扫描电子显微镜观察制绒后硅片表面微观形貌,利用紫外-可见分光光度计测试并计算硅片表面反射率,并分析铜催化刻蚀形貌和刻蚀速率随温度、H2O2浓度的变化情况,讨论铜催化刻蚀过程中倒金字塔的形成机理以及H2O2浓度对硅片表面刻蚀形貌的影响规律。结果 双氧水浓度通过控制铜纳米颗粒在硅片表面的沉积-氧化平衡,来影响铜颗粒的沉积状态,并最终影响刻蚀过程。随着H2O2浓度的提高,刻蚀速率先升高、后降低,最后趋于平稳。同时,刻蚀过程将产生四个阶段的结构演化。结论 H2O2在铜催化化学刻蚀过程中起着重要作用,调节H2O2浓度可控制铜纳米颗粒的沉积-氧化平衡,进而在硅片表面形成形貌均匀且反射率低的倒金字塔结构。40 ℃下,H2O2浓度为1.6 mol/L时,可在金刚线切割n型单晶硅片上成功制备出均匀的倒金字塔结构,表面反射率降低至6.4%,且反应速率温和(0.23 μm/min),硅片减薄量低(3.5 μm)。
英文摘要:
      The purpose of this work is to prepare nano-inverted pyramid structure with low reflectivity on the n-type monocrystalline silicon surface under mild reaction rate and to investigate the effect of H2O2 concentration on the deposition and etching behavior of nano-Cu particles. The surface weaving of diamond wire cut n-type single crystal silicon was performed by using copper nanoparticle catalytic etching method. The scanning electron microscope was used to observe the micro- morphology of flocking silicon wafer after texturing. The reflectance of silicon wafer surface was calculated by UV-Vis spectrophotometer, the relationship between copper-catalyzed etching morphology and etching rate with temperature and H2O2 concentration was analyzed, and the mechanism of inverted pyramid formation during copper-catalyzed etching and the influence of H2O2 concentration on the etching morphology of silicon wafer surface were discussed. The result shows that the concentration of hydrogen peroxide controls the deposition-oxidation balance of copper nanoparticles the silicon surface to influence the deposition status of copper particles, and ultimately affects the silicon etching process. With the addition of H2O2, the etching rate is first raised and then lowered and finally leveled off, while the etching process may lead to four stages of structural evolution. H2O2 plays an important role in the process of copper assisted chemical etching. The deposition-oxidation balance of copper particles can be controlled by adjusting the concentration of H2O2, and the inverted pyramid structure with uniform morphology and low reflectivity can be formed on the surface of silicon wafer. Uniform inverted pyramid structure is prepared on diamond wire sawed n-type silicon wafers under 40 ℃ with H2O2 concentration of 1.6 mol/L. The surface reflectivity is reduced to 6.4%, and the reaction rate was mild (0.23 μm/min), and the wafer thinning was low (3.5 μm).
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24194483位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号