蒋钊,高恒蛟,周晖,肖更竭,成功,汪科良.原子层沉积技术改性CrN硬质涂层性能的第一性原理研究[J].表面技术,2021,50(11):202-207.
JIANG Zhao,GAO Heng-jiao,ZHOU Hui,XIAO Geng-jie,CHENG Gong,WANG Ke-liang.First-principles Calculations on the Performance of the Atom Layer Deposition Modified CrN Hard Coatings[J].Surface Technology,2021,50(11):202-207
原子层沉积技术改性CrN硬质涂层性能的第一性原理研究
First-principles Calculations on the Performance of the Atom Layer Deposition Modified CrN Hard Coatings
投稿时间:2020-12-22  修订日期:2021-05-08
DOI:10.16490/j.cnki.issn.1001-3660.2021.11.020
中文关键词:  第一性原理  原子层沉积  CrN  界面性能  性能仿真
英文关键词:first-principles  atomic layer deposition  CrN  interface property  performance simulation
基金项目:
作者单位
蒋钊 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
高恒蛟 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
周晖 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
肖更竭 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
成功 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
汪科良 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000 
AuthorInstitution
JIANG Zhao Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
GAO Heng-jiao Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
ZHOU Hui Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
XIAO Geng-jie Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
CHENG Gong Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
WANG Ke-liang Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Space Technology Institute of Physics, Lanzhou 730000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 基于密度泛函理论的第一性原理,对原子层改性氮化铬(CrN)涂层的关键性能进行仿真计算,以充分了解涂层微观组织结构演变和微观界面结构本质,为后续原子层沉积CrN工艺研究提供理论指导。方法 通过建立CrN(011)-CrN(011)复合体系模型,分析计算了涂层的界面性能、弹性性能及热力学性能。结果 模型结构经过优化后,各原子层间间距均发生不同程度的减小,且各层间距趋于一致。态密度分析表明:其优良的结构稳定性主要来自6.4~4.8 eV范围内Cr原子3d轨道和N原子2p轨道间的相互作用;基于应力应变的弹性常数满足波恩准则判定依据,力学性能稳定,计算结果为硬度30.29 GPa,体积模量409.83 GPa,剪切模量270.86 GPa。采用NVT系综模拟,当温度T≤1023 K时,温度波动振荡收敛;当温度T>1023 K时,温度在某个时间点瞬时激增而不收敛,可以得出CrN涂层的极限使用温度为1023 K。结论 原子层沉积改性的CrN硬质涂层具有优良的界面相容性,成键强度高,界面能低,结构性能稳定。
英文摘要:
      Based on the first-principles of density functional theory, the key properties of the atomic layer deposition modified CrN coating were simulated calculation to fully understand the evolution of microstructure and the nature of microstructure and interface structure of the coating, and to provide theoretical guidance for the subsequent study of atomic layer deposition CrN technology. By establishing the CrN(011)-CrN(011) composite system model, the interface properties, elastic properties and thermodynamic properties of the coating were analyzed and calculated. After the model structure was optimized, the spacing between each atomic layer was reduced in different degrees, and the distance between each layer tends to be the same. The density of state analysis demonstrates that the excellent structure stability mainly comes from the interaction between Cr-3d and N-2p in the range of −6.4 to 4.8 eV. The elastic constants based on stress-strain satisfy the basis of Bonn's criterion, the mechanical properties are stable, and the stiffness, bulk modulus and shear modulus of the CrN(011)-CrN(011) coating is 30.29, 409.83, 270.86 GPa, respectively. By using NVT system synthesis simulation, when the temperature T≤1023 K, the temperature fluctuation oscillation converges, and when the temperature T>1023 K, the temperature instantaneously surges at a certain time point without convergence, and it can be concluded that the limit use temperature of CrN coating is 1023 K. CrN hard coatings modified by atomic layer deposition have excellent interfacial compatibility, high bonding strength, low interfacial energy and stable structure and properties.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24194655位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号