洪远,孙聪,修世超,姚云龙,Xin Chen.磨粒强化加工表面材料动态再结晶行为的研究[J].表面技术,2021,50(9):53-69.
HONG Yuan,SUN Cong,XIU Shi-chao,YAO Yun-long,Xin,CHEN.Investigation on Dynamic Recrystallization Behavior of Abrasive Grinding Hardening Surface[J].Surface Technology,2021,50(9):53-69
磨粒强化加工表面材料动态再结晶行为的研究
Investigation on Dynamic Recrystallization Behavior of Abrasive Grinding Hardening Surface
投稿时间:2020-12-22  修订日期:2021-03-01
DOI:10.16490/j.cnki.issn.1001-3660.2021.09.005
中文关键词:  磨粒强化加工  全尺度  热力耦合作用  动态再结晶  细化层  元胞自动机法
英文关键词:abrasive grinding hardening  full-scale  thermal-mechanical effect  dynamic recrystallization  refinement layer  cellular automata
基金项目:国家自然科学基金(51775101,5210051161);中央高校基本科研业务专项(N2024002-18,N2213014);东北大学博士后基金(20200326)
作者单位
洪远 东北大学,沈阳 110819 
孙聪 东北大学,沈阳 110819 
修世超 东北大学,沈阳 110819 
姚云龙 东北大学,沈阳 110819 
Xin Chen Oklahoma State University,America Oklahoma 74076 
AuthorInstitution
HONG Yuan Northeastern University, Shenyang 110819, China 
SUN Cong Northeastern University, Shenyang 110819, China 
XIU Shi-chao Northeastern University, Shenyang 110819, China 
YAO Yun-long Northeastern University, Shenyang 110819, China 
Xin,CHEN Oklahoma State University, Oklahoma 74076, America 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 基于磨粒强化加工非线性热力耦合效应,研究加工表面材料动态再结晶行为。方法 以45#钢为研究对象,首先建立基于砂轮轮廓及磨粒分布特征的热力耦合全尺度有限元模型,然后利用三维元胞自动机法,构建奥氏体晶粒的位错密度增长控制方程,研究动态热力耦合作用对奥氏体晶粒动态再结晶过程的影响机理。最后,结合磨粒强化加工实验,验证不同进给速度与磨削深度下再结晶晶粒尺寸与体积分数的沿层变化规律,提出加工表面材料晶粒细化过程的参数化控制方法。结果 加工过程中,部分奥氏体组织会发生动态再结晶现象,并在工件表面形成细化层,细化层的厚度远小于强化层。随着与表面距离的增加,再结晶晶粒平均尺寸逐渐增大,体积分数先增大、后减小。改变磨削深度和进给速度,可使再结晶晶粒的体积分数和平均尺寸分别提高5倍和15%以上。结论 通过对比实验与模拟结果,发现加工过程中热力耦合效应沿层分布差异性明显。加工应变场的作用效果远小于动态温度场的影响,这限制了表面细化层的厚度;应变场沿层递减分布,越靠近加工表面,晶粒细化现象越明显;受层间应变与应变率差异性的影响,表层再结晶晶粒形核较快,但生长速度缓慢,再结晶晶粒体积分数偏小。增大切深与进给速度会使接触区金属的去除量增加、表面温度升高且晶粒畸变现象明显,有利于细化层的形成。
英文摘要:
      Based on the nonlinear thermal-mechanical effect in abrasive grinding hardening, the work aims to study the dynamic recrystallization of abrasive grinding hardening surface.The full-scale finite element thermal-mechanical coupled model considering wheel’s profile and abrasive distribution is established by 45# steel firstly. Afterwards, the governing equation on the increase of dislocation density under dynamic thermal-mechanical effect is built by three dimensional cellular automata (3D-CA) to study the influence mechanism of dynamic thermal-mechanical effect on dynamic recrystallization of austenite grain. Finally, with the help of grinding experiments, the variation regulations on austenite grain size and its content along the surface layers are validated under different feeding rates and rotation speeds. Meanwhile, a parametric reference for grain refinement of machining surface in actual machining process is proposed. Dynamic recrystallization occurs in some austenite structures, and the refinement layer forms on the machined surface. The thickness of the refinement layer is much smaller than that of the strengthening layer. With the increase of distance away from workpiece surface, the average size of recrystallized grains increases gradually, while the volume fraction of recrystallized grains first increased and then decreased. The volume fraction and average size of recrystallized grains are increased by more than 5 times and more than 15% by improving grinding depth and feeding rate respectively. By comparison, it is found that the thermal-mechanical effect is in a different distribution along the workpiece layers. The influence range of the machining strain field is much smaller than that of the dynamic temperature field, which limits the thickness of the refinement layer. The strain field decreases along the depth direction. The obvious grain refinement phenomenon is observed at the position nearby the workpiece surface. Due to the difference of interlayer strain and strain rate, the recrystallization grain nucleates quickly but grows slowly at workpiece surface layer, which leads to a small volume fraction. The material removal, the surface temperature and grain distortion all become larger when comes to the larger grinding depth and feeding rate, which is beneficial for the formation of refinement layer.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24159374位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号