孟君晟,李成硕,弭德振,王铀.TC4合金表面熔覆石墨烯增强钛基复合涂层的组织及性能[J].表面技术,2021,50(4):79-85.
MENG Jun-sheng,LI Cheng-shuo,MI De-zhen,WANG You.Structure and Properties of Graphene Reinforced Ti-based Composite Coatings on TC4 Alloy[J].Surface Technology,2021,50(4):79-85
TC4合金表面熔覆石墨烯增强钛基复合涂层的组织及性能
Structure and Properties of Graphene Reinforced Ti-based Composite Coatings on TC4 Alloy
投稿时间:2021-01-25  修订日期:2021-04-07
DOI:10.16490/j.cnki.issn.1001-3660.2021.04.007
中文关键词:  TC4合金  氩弧熔覆  石墨烯  显微硬度  耐磨性
英文关键词:TC4 alloy  argon arc cladding  graphene  microhardness  wear resistance
基金项目:山东省自然科学基金项目(ZR2019MEE107);大学生创新创业训练计划项目(S202011510012);山东交通学院博士基金项目(BS2018005)
作者单位
孟君晟 山东交通学院 船舶与港口工程学院,山东 威海 264200 
李成硕 山东交通学院 船舶与港口工程学院,山东 威海 264200 
弭德振 山东交通学院 船舶与港口工程学院,山东 威海 264200 
王铀 山东交通学院 船舶与港口工程学院,山东 威海 264200;哈尔滨工业大学 材料科学与工程学院,哈尔滨 150001 
AuthorInstitution
MENG Jun-sheng Naval Architecture and Port Engineering Colloge, Shandong Jiaotong University, Weihai 264200, China 
LI Cheng-shuo Naval Architecture and Port Engineering Colloge, Shandong Jiaotong University, Weihai 264200, China 
MI De-zhen Naval Architecture and Port Engineering Colloge, Shandong Jiaotong University, Weihai 264200, China 
WANG You Naval Architecture and Port Engineering Colloge, Shandong Jiaotong University, Weihai 264200, China;School of Materials Science and Engineering, Harbin Insitute of Technology, Harbin 150001, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过氩弧熔覆技术在TC4合金表面制备石墨烯增强钛基复合涂层,以改善其耐磨性能。方法 将钛粉和石墨烯在球磨机中充分混合。将混合后的粉末涂覆于TC4合金表面,采用氩弧熔覆技术将预涂覆粉末熔化,制备出陶瓷颗粒增强钛基熔覆层。采用X射线衍射分析仪分析涂层的物相,利用光学显微镜、扫描电子显微镜分析熔覆层中颗粒相的组成及分布。采用显微维氏硬度仪和摩擦磨损试验机,测试熔覆层的显微硬度和磨损性能。结果 熔覆层厚度可达1 mm,且表面及横截面没有气孔、裂纹等缺陷产生,物相主要包括TiC和α-Ti。熔覆层中不同区域的组织存在差别,涂层的中上部组织主要为树枝晶,底部组织中树枝晶逐渐减少。熔覆层与基体呈冶金结合,组织致密。增强相TiC以颗粒状和花瓣状形式存在。石墨烯增强钛基复合涂层的显微硬度高达845.4HV。在相同磨损条件下,TC4合金基体与熔覆层的磨损量分别是0.153 g和0.0123 g,熔覆层的磨损量明显降低。涂层的磨损机制主要是磨粒磨损。结论 与TC4合金基体对比,熔覆层的显微硬度提高约2.5倍,耐磨性提高12倍。氩弧熔覆原位自生TiC陶瓷颗粒增强钛基熔覆层可显著提高TC4合金表面的耐磨性。
英文摘要:
      The work aims to study the graphene reinforced titanium-based composite coating is prepared on the surface of TC4 alloy by argon arc cladding technology to improve its wear resistance. In this work, the Graphene power and Ti powder are ball-milled and mixed. The mixed powder was coated on the surface of TC4 alloy, and the ceramic particle-reinforced titanium-based cladding coating is prepared by alloy melting the precoated powder by argon arc cladding technology. The phase of the cladding coating was analyzed by X-ray diffraction analyzer. The composition and distribution of ceramic particles in cladding coating was analyzed by optical microscope and scanning electron microscope and optical microscope. Microhardness and wear properties of the cladding coating was measured by vickers hardness tester and universal friction and wear tester. The thickness of cladding coating of this paper is 1.0 mm, without obvious defects like pores, cracks on the surface and cross section.The phases of the cladding coating mainly include α-Ti and TiC. However, the results show that the microstructure of different areas in the coating is different. The dendrite structure is mainly distributed in the middle and upper part of the coating, while the dendrites in the bottom part decrease gradually. The cladding coating and the substrate are metallurgically bonded, and the structure is dense. The enhanced phase is granular and petal. The microhardness of the coating is as high as 845.4HV, the wear loss of, the pure copper matrix and the cladding layer is 0.153 g and 0.0123 g under the same wear conditions, respectively. and the wear amount of the cladding layer is significantly reduced; there is no adhesion mark on the wear of the cladding coating, and the wear mechanism is abrasive wear. Compared with the pure copper matrix, the microhardness of the cladding layer is increased by about 2.5 times, and the wear resistance increased by 12 times. The TiC ceramic particle cladding coating can significantly improve the wear resistance of theTC4 alloy surface.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26691756位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号