龙海川,邱长军,郑鹏飞,刘豪,陈勇.面向等离子体壁材料的腐蚀行为与涂层防护综述[J].表面技术,2021,50(2):123-133. LONG Hai-chuan,QIU Chang-jun,ZHENG Peng-fei,LIU Hao,CHEN Yong.Review on the Corrosion Behavior and Coating Protection of Plasma Facing Materials[J].Surface Technology,2021,50(2):123-133 |
面向等离子体壁材料的腐蚀行为与涂层防护综述 |
Review on the Corrosion Behavior and Coating Protection of Plasma Facing Materials |
投稿时间:2020-05-22 修订日期:2020-07-21 |
DOI:10.16490/j.cnki.issn.1001-3660.2021.02.013 |
中文关键词: 面向等离子体材料 高温腐蚀 辐射损伤 蒸发/溅射 防护涂层 |
英文关键词:plasma facing materials high temperature corrosion radiation damage evaporation/sputtering protective coatings |
基金项目:国家重点研发计划(2017YFE0301300) |
|
Author | Institution |
LONG Hai-chuan | School of Mechanical Engineering, University of South China, Hengyang 421001, China |
QIU Chang-jun | School of Mechanical Engineering, University of South China, Hengyang 421001, China |
ZHENG Peng-fei | Southwestern Institute of Physics, Chengdu 610225, China |
LIU Hao | School of Mechanical Engineering, University of South China, Hengyang 421001, China |
CHEN Yong | School of Mechanical Engineering, University of South China, Hengyang 421001, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
面向等离子体材料(Plasma Facing Materials, PFMs)可保护磁约束核聚变装置部件,使此部件不受芯部边缘等离子体的影响,但等离子体与壁相互作用(Plasma-Wall Interactions, PWI)所引起的高温腐蚀、辐射损伤和燃料滞留等问题已然成为先进核聚变装置的发展瓶颈。目前,低Z材料(C、Be)掺杂元素合金化、高Z材料(W、Mo)掺杂元素合金化以及不锈钢防护涂层是面向等离子体壁材料缓解等离子体作用的首选防护涂层。阐述了固体等离子体壁材料的一般腐蚀机制和常见PFMs的主要特征,发现热流等离子体作用下的壁蒸发和溅射是造成壁材料腐蚀的主要原因,而粒子辐照带来的组织结构缺陷将增强氢同位素在壁材料中的溶解与扩散,并随杂质共同沉积在壁材料表面。其次,重点综述了国内外关于等离子体作用下碳壁、钨壁、铍壁材料蒸发与溅射引起的腐蚀和碳氢结合的化学腐蚀原理,以及在此基础上开发出的碳基复合材料、钨基复合材料和不锈钢防护涂层等离子体壁材料的最新研究进展,对比发现高Z合金化的防护涂层和制备技术具有巨大的应用前景。最后分析了当前已开发的耐热腐蚀和等离子体相容性良好的壁材料亟待解决的一些关键基础问题,提出了未来PFMs的主要技术方向和发展趋势,期望为极端工况下服役的聚变反应堆新型防护涂层材料的研发提供重要参考。 |
英文摘要: |
Plasma facing materials (PFMs) are used to protect the components of magnetic confinement nuclear fusion devices from the plasma at the core edge, but 1the problems of high temperature corrosion, radiation damage and fuel retention of plasma-wall interactions (PWI) have become the development bottleneck of advanced nuclear fusion devices. The alloying of doped elements of both low-Z materials (C, Be) and high-Z materials (W, Mo), and stainless steel are currently the preferred protective coatings for plasma wall materials to relieve the effect of plasma. This paper describes the general corrosion mechanism of solid plasma wall materials and the main characteristics of common PFMs, indicating that wall evaporation and sputtering under the action of hot plasma are the main corrosion behaviors of wall materials, and the structural defects caused by particle irradiation will increase the dissolution and diffusion of hydrogen isotopes in the wall material, deposited on the surface of the wall material along with impurities. Then, the paper focuses on the Chinese and international researches about the corrosion degree caused by the evaporation and sputtering of carbon wall, tungsten wall and beryllium wall materials under the action of plasma and the chemical corrosion principle of hydrocarbon combination, and the latest research progress of carbon-based composite materials, tungsten-based composite materials and stainless steel protective coating plasma wall materials developed on this basis, and the comparison shows that high-Z alloyed protective coatings and preparation technologies have huge application prospects. Finally, the paper analyzes some of the key basic problems that have to be solved in the current development of heat-resistant corrosion and good plasma compatibility wall materials, and proposes the main technical directions and development trends of PFMs in the future. It is expected to provide an important reference for the research and development of new protective coating materials used in extreme conditions of fusion reactors. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|