杨彦龙,张凯峰,曹生珠,汤富领,薛红涛.C/SiC复合材料与抗氧化陶瓷涂层的优化匹配[J].表面技术,2020,49(9):291-297.
YANG Yan-long,ZHANG Kai-feng,CAO Sheng-zhu,TANG Fu-ling,XUE Hong-tao.Optimal Matching of Anti-oxidation Ceramic Coatings with C/SiC Composites[J].Surface Technology,2020,49(9):291-297
C/SiC复合材料与抗氧化陶瓷涂层的优化匹配
Optimal Matching of Anti-oxidation Ceramic Coatings with C/SiC Composites
投稿时间:2020-03-21  修订日期:2020-09-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.09.033
中文关键词:  有限元  C/SiC复合材料  热冲击  涂层  界面热应力
英文关键词:finite element  C/SiC composite  thermal shock  coating  interfacial thermal stress
基金项目:真空技术与物理国家级重点实验室开放基金(ZWK1706);国家自然科学基金(11764027)
作者单位
杨彦龙 1. 兰州理工大学 有色金属先进加工及再利用国家重点实验室,兰州 730050 
张凯峰 2.真空技术与物理国家重点实验室,兰州 730000 
曹生珠 2.真空技术与物理国家重点实验室,兰州 730000 
汤富领 1. 兰州理工大学 有色金属先进加工及再利用国家重点实验室,兰州 730050 
薛红涛 1. 兰州理工大学 有色金属先进加工及再利用国家重点实验室,兰州 730050 
AuthorInstitution
YANG Yan-long 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 
ZHANG Kai-feng 2.State Key Laboratory of Vacuum Technology and Physics, Lanzhou 730000, China 
CAO Sheng-zhu 2.State Key Laboratory of Vacuum Technology and Physics, Lanzhou 730000, China 
TANG Fu-ling 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 
XUE Hong-tao 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 快速筛选与C/SiC复合材料界面热应力最低匹配的抗氧化涂层材料。方法 在原用于单层陶瓷材料热冲击计算模型的基础上改造建立了一个简易但能合理解释热冲击下抗氧化涂层失效的解析模型。采用有限元模型对解析模型得到的界面热应力加以验证,二者结果基本一致。结果 当裂纹长度小于30 μm时,裂纹对涂层-基体界面热应力的影响几乎可以忽略,然而,当涂层表面预制长度大于30 μm的微裂纹或增加涂层中的微裂纹密度均能够有效降低涂层-基体界面的热应力,提高涂层在服役条件下的断裂临界温差,改善涂层材料的抗热震性,提高涂层的使用寿命。利用该解析模型计算出各温度下涂层-基体体系具体的断裂临界温差,并预测涂层-基体体系最危险的工作温度区间。结论 解析模型可以用来方便地计算涂层材料的热应力和断裂临界温差,从而筛选出热应力最小匹配的涂层材料。C/SiC复合材料的抗氧化涂层中预制长度大于30 mm的微裂纹,可有效提高涂层抗热震性能。
英文摘要:
      The work aims to quickly select the anti-oxidation coating materials on the C/SiC composites with the minimum interfacial thermal stress. An easy-used analytical model based on the thermal shock calculation model previously used for single-layer ceramic materials was established, which could reasonably explain the failure of oxidation resistant coating under thermal shock. The thermal stress obtained by the analytical model was verified by the finite element model and the results were consistent. When the crack length was less than 30 μm, the effect of the crack on the interfacial thermal stress of the coating- substrate was almost negligible. However, the micro-cracks with the pre-fabrication length over 30 μm or the increase of crack density on the coating surface could effectively reduce the coating-substrate interfacial thermal stress and improve the critical fracture temperature difference of the coating under service conditions, strengthening the thermal shock resistance of coating materials and increasing the service life of coatings. The particular critical fracture temperature difference of the coating- substrate system was calculated at different initial temperature by this analytical model and the most dangerous working temperature range of the coating-substrate system was predicted. The analytic model can easily calculate thermal stress and critical fracture temperature difference of coating materials, thus screening out optimal matching of anti-oxidation coating material with C/SiC composites. The crack with pre-fabrication length over 30 mm in the anti-oxidation coating material of C/SiC composite can effectively improve the thermal shock performance of coating.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24115558位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号