张群莉,童文华,陈智君,姚建华,李铸国,冯凯,Volodymyr S. Kovalenko.光斑尺寸对42CrMo钢激光深层淬火硬化层几何特征的影响[J].表面技术,2020,49(1):254-261.
ZHANG Qun-li,TONG Wen-hua,CHEN Zhi-jun,YAO Jian-hua,LI Zhu-guo,FENG Kai,Volodymyr S. Kovalenko.Effect of Spot Size on Geometrical Characteristics of Laser Deep Quenching Hardened Layer of 42CrMo Steel[J].Surface Technology,2020,49(1):254-261
光斑尺寸对42CrMo钢激光深层淬火硬化层几何特征的影响
Effect of Spot Size on Geometrical Characteristics of Laser Deep Quenching Hardened Layer of 42CrMo Steel
投稿时间:2019-06-29  修订日期:2020-01-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.01.030
中文关键词:  激光深层淬火  42CrMo钢  数值模拟  几何特征  均匀性  马氏体转变
英文关键词:laser deep quenching  42CrMo steel  numerical simulation  geometrical features  uniformity  martensite transformation
基金项目:国家重点研发计划课题(2018YFB0407301);国家自然科学基金(51605441);浙江省属高校基本科研业务费项目(RF-C2019003)
作者单位
张群莉 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310023;2.特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
童文华 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310023;2.特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
陈智君 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310023;2.特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
姚建华 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310023;2.特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023 
李铸国 3.上海交通大学 材料科学与工程学院,上海 200240 
冯凯 3.上海交通大学 材料科学与工程学院,上海 200240 
Volodymyr S. Kovalenko 1.浙江工业大学 a.激光先进制造研究院 b.机械工程学院,杭州 310023;2.特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州 310023;4.乌克兰国立科技大学 激光技术研究所,乌克兰 基辅 03056 
AuthorInstitution
ZHANG Qun-li 1.a. Institute of Laser Advanced Manufacturing, b. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2.Key Laboratory of E & M Ministry of Education & Zhejiang Province, Hangzhou 310023, China 
TONG Wen-hua 1.a. Institute of Laser Advanced Manufacturing, b. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2.Key Laboratory of E & M Ministry of Education & Zhejiang Province, Hangzhou 310023, China 
CHEN Zhi-jun 1.a. Institute of Laser Advanced Manufacturing, b. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2.Key Laboratory of E & M Ministry of Education & Zhejiang Province, Hangzhou 310023, China 
YAO Jian-hua 1.a. Institute of Laser Advanced Manufacturing, b. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2.Key Laboratory of E & M Ministry of Education & Zhejiang Province, Hangzhou 310023, China 
LI Zhu-guo 3.School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China 
FENG Kai 3.School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China 
Volodymyr S. Kovalenko 1.a. Institute of Laser Advanced Manufacturing, b. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; 2.Key Laboratory of E & M Ministry of Education & Zhejiang Province, Hangzhou 310023, China; 4.Laser Technology Research Institute, National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev 03056, Ukraine 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高42CrMo钢激光淬火后硬化层的深度和分布均匀性。方法 利用COMSOL Multiphysics软件对42CrMo钢激光淬火过程中温度场的演变进行分析,且考虑材料的热物性参数随温度变化。通过设定激光工艺参数模拟试样的温度场分布,利用马氏体转变条件得到硬化层形貌尺寸。参照模拟结果,利用连续输出的光纤耦合半导体激光器对42CrMo钢进行激光淬火实验,用热电偶测温仪对试样测温并与模拟的温度历史曲线进行对比,用光学显微镜对试样横截面处硬化层形貌进行分析,将实验所得硬化层形貌与模拟结果进行比较。并在相同的功率密度下,改变光斑的几何尺寸进行模拟,分析并比较硬化层的几何特征。结果 实验所测某点的温度历史曲线与模拟结果一致性较高,硬化层实际形貌与模拟结果基本吻合。在激光功率密度不变时,随着垂直于扫描方向上的光斑宽度增加,硬化层宽度呈正比例增加,硬化层深度则先增后减,距离硬化层中心最深处相同距离点的曲率则逐渐减少。结论 通过优化激光淬火工艺参数,控制激光淬火的热传导时间和深度方向的温度梯度分布,可以在表面不熔化的前提下,获得较深的硬化层。光斑尺寸对42CrMo钢激光深层淬火硬化层深度和硬化层均匀性有较大影响,选择较大的光斑宽度可以得到更为均匀的硬化层。
英文摘要:
      The work aims to improve the depth and uniformity of the hardened layer of 42CrMo steel after laser quenching. The temperature field evolution of 42CrMo steel during laser quenching was analyzed by COMSOL Multiphysics software, and the variation of thermal properties of the material along with temperature was considered. The temperature field distribution of the sample was simulated by setting the laser processing parameters, and the morphology size of the hardened layer was obtained under the martensitic transformation conditions. According to the simulation results, the laser quenching experiment was carried out to 42CrMo steel by fiber-coupled diode laser with continuous wave. The temperature of the sample was measured by a thermocouple thermometer and compared with the simulated temperature history curve. The morphology of the hardened layer at the cross section of the sample was analyzed by optical microscopy and the morphology of the hardened layer obtained by the experiment was compared with the simulation results. The laser quenching process was simulated by changing the spot size under the same laser power density and the geometrical characteristics of hardened layer were analyzed and compared. The temperature history curve of a certain point measured by the experiment was consistent with the simulation result, and the morphology of the hardened layer obtained by the experiment was basically consistent with the simulation results. When the laser power density was constant, the width of the hardened layer increased proportionally with increase of the width of the spot perpendicular to the scanning direction, and the depth increased first and then decreased. The curvature of the point with the same distance from the deepest point in the center of the hardened layer gradually reduced. By optimizing the processing parameters of laser quenching and controlling the heat conduction time and temperature gradient distribution in depth direction of laser quenching, a deeper hardened layer can be obtained without surface melting. Spot size has a great influence on the depth and uniformity of laser hardened layer of 42CrMo steel and a larger spot width can be selected to obtain a more evenly distributed hardened layer.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24081881位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号