洪昊,谢冬柏,多树旺.煤油助燃剂燃烧气氛对低碳钢表面氧化层的影响[J].表面技术,2020,49(1):87-93.
HONG Hao,XIE Dong-bai,DUO Shu-wang.Effect of Kerosene Combustion Atmosphere on Surface Oxide Layer of Low-carbon Steel[J].Surface Technology,2020,49(1):87-93
煤油助燃剂燃烧气氛对低碳钢表面氧化层的影响
Effect of Kerosene Combustion Atmosphere on Surface Oxide Layer of Low-carbon Steel
投稿时间:2019-11-30  修订日期:2020-01-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.01.011
中文关键词:  表面氧化  助燃剂  煤油  低碳钢  火灾调查
英文关键词:surface oxidation  accelerants  kerosene  low-carbon steel  fire investigation
基金项目:痕迹检验鉴定技术公安部重点实验室(2018121705);江西省材料表面工程重点实验室(KFGJ19009)
作者单位
洪昊 1.江西科技师范大学 江西省材料表面工程重点实验室,南昌 330013 
谢冬柏 2.南通理工学院 机械工程学院,江苏 南通 226002;3.南昌航空大学 材料科学与工程学院,南昌 330063 
多树旺 1.江西科技师范大学 江西省材料表面工程重点实验室,南昌 330013 
AuthorInstitution
HONG Hao 1.Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China 
XIE Dong-bai 2.School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; 3.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 
DUO Shu-wang 1.Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为解决复杂火灾现场中助燃剂易污染、氧化、难寻找等问题,通过对低碳钢在煤油燃烧环境气氛中氧化行为的研究,得出其表面氧化层特点及与火场助燃剂之间的关系,以期为火场物证检验提供一种新的途径。方法 使用模拟装置获得煤油燃烧气氛,并在不同温度下对其中的低碳钢进行氧化。采用原子力显微镜(AFM)和扫描电子显微镜(SEM)分析氧化层的形貌,用SEM自带的能谱仪(EDS)和X射线衍射仪(XRD)分析氧化层的相组成,用精密分析天平研究试样的氧化动力学。结果 火场中的燃油燃烧气氛促进了低碳钢氧化层的形成,并且氧化层中没有检测到FeO相。每组氧化时间下的样品表面均沉积了10%~20%的碳。近似抛物线规律的氧化动力学曲线说明氧化层在后期的氧化趋于稳定。结论 在燃烧环境气氛中,反应初始阶段,通过化学吸附显著加快了氧化层的形成,在该实验温度和强氧化性气氛存在的情况下,不利于FeO的形成。煤油的不完全燃烧造成了样品表面的碳沉积,并且碳含量的多少与助燃剂的碳链长度有关,这可为火场中是否有煤油助燃剂的存在提供参考。
英文摘要:
      The work aims to overcome the shortcomings of accelerant pollution, oxidation, loss, etc. in the complex fire scene through the relationship between the characteristics of the oxide layer and the fire scene combustion accelerants obtained by studying the oxidation behavior of low carbon steel in the kerosene combustion environment, and then provide new method for the fire investigation. The simulated kerosene combustion environment was obtained by simulation device and the low carbon steel was oxidized at different durations of laboratory simulated kerosene-combustion atmosphere. The morphology of the oxide layer was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The phase composition of the oxide layer was analyzed by energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD). The oxidation kinetics of the samples was studied by a precision analytical balance. In the fire scene, the strong oxidizing properties of the kerosene combustion atmosphere promoted the formation of a low carbon steel oxide layer, and there was no FeO phase in the oxide layer. The 10%~20% of carbon was deposited on the surface of the sample for different oxidation time. The oxidation kinetics curve of the parabolic law indicated that the oxide layer tended to be dense at later stage. The complex oxidizing atmosphere greatly accelerates the formation of the oxide layer by chemical adsorption in the initial stage of the reaction, and is not conducive to the formation of FeO under the conditions of the experimental temperature and the strong oxidizing atmosphere. The incomplete combustion of kerosene causes carbon deposition on the surface of the sample, and the amount of carbon is related to the carbon chain length of the combustion accelerants, which can provide a reference for the presence of kerosene combustion accelerants in the fire scene.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24082356位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号