杨庆祥,赵斌,员霄,蹤雪梅,周野飞.纳米 Y2 O3 对过共晶 Fe-Cr-C 堆焊合金表面微观组织与耐磨性的影响[J].表面技术,2015,44(4):42-47,53. YANG Qing-xiang,ZHAO Bin,YUN Xiao,ZONG Xue-mei,Zhou Ye-fei.Influence of Nano-Y2O3 on Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Alloy Surface[J].Surface Technology,2015,44(4):42-47,53 |
纳米 Y2 O3 对过共晶 Fe-Cr-C 堆焊合金表面微观组织与耐磨性的影响 |
Influence of Nano-Y2O3 on Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Alloy Surface |
投稿时间:2014-10-27 修订日期:2015-04-20 |
DOI:10.16490/j.cnki.issn.1001-3660.2015.04.008 |
中文关键词: 纳米 Y2O3 过共晶 Fe-Cr-C 堆焊合金 M7C3 |
英文关键词:nano-Y2 O3 Fe-Cr-C hardfacing alloys M7 C3 |
基金项目:国家自然科学基金(51271163,51471148) |
|
Author | Institution |
YANG Qing-xiang | State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China |
ZHAO Bin | Engineering Machinery Research Institute of Xuzhou Construction Machinery Group, Xuzhou 221004, China |
YUN Xiao | State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China |
ZONG Xue-mei | Engineering Machinery Research Institute of Xuzhou Construction Machinery Group, Xuzhou 221004, China |
Zhou Ye-fei | State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 研制一种新型添加纳米 Y2O3 的过共晶 Fe-Cr-C 堆焊合金,改善堆焊合金粗大的初生M7C3 碳化物,提高堆焊合金的耐磨性。 方法 采用明弧堆焊的方法制作堆焊合金,用金相电子显微镜对其表面微观组织进行观察,用洛氏硬度计对其表面硬度进行测量,用砂带摩擦磨损试验机对其表面耐磨性进行评价,用扫描电子显微镜对其磨损形貌进行观察。 最后,利用错配度理论对 M7C3 的细化机理进行分析。 结果 过共晶 Fe-Cr-C 堆焊合金由初生 M7C3 和共晶组织(共晶 M7C3、奥氏体及部分马氏体)组成。 未添加 Y2O3 的堆焊合金初生 M7C3 比较粗大,其平均尺寸在 22 μm,硬度为 55HRC,磨损量为 0. 85mg/ mm2。 经纳米 Y2O3 改性之后,堆焊合金的初生 M7C3 尺寸变小,其平均尺寸为 16 μm,硬度为57HRC,磨损量减少为 0. 59 mg/ mm2,Y2O3 的(001) 面与正交 M7C3 的(100) 面之间的二维错配度为8. 59% 。 结论 Y2O3 可以成为 M7C3 的非均质形核核心,从而细化了过共晶 Fe-Cr-C 堆焊合金的初生M7C3 碳化物,提高了过共晶 Fe-Cr-C 堆焊合金表面耐磨性。 |
英文摘要: |
Objective To develop novel hypereutectic Fe-Cr-C hardfacing alloys (Y2O3-free and Y2O3-modified, respectively) so as to improve the coarse carbides and increase the wear resistance of Fe-Cr-C hardfacing alloys. Methods The hardfacing alloys were deposited by the automatic open arc surfacing welding method. The microstructures were observed by optical microscopy. Meanwhile, the macro hardness of the hardfacing alloy surface was measured by the Rockwell hardness tester. The wear resistance of the hardfacing alloy surface was evaluated by the abrasive wear test. Worn morphology was observed by field emission scanning electron microscopy. Moreover, the mechanism of the microstructure refinement by the two-dimensional misfit theory was also discussed. Results The results showed that the microstructures of the hardfacing alloy consisted of the primary M7 C3(M = Cr, Fe) carbide and eutectic structure (eutectic M7 C3 carbide+ retained austenite and its product). The average size of primary carbide was about 22 μm. The mass loss and the hardness of the Y2 O3 -free alloy were 0. 85 mg / mm2 and 55HRC, respectively. After adding Y2 O3 , the average size of carbide was about 16 μm. The mass loss of the coating was 0. 59 mg / mm2 and the hardness was 57HRC. The two-dimensional lattice misfit between the face (001) of Y2 O3 and the face (100) of orthorhombic M7 C3 was 8. 59% . Conclusion By adding Y2 O3 as the heterogeneous nuclei, the primary M7 C3 carbide was refined and the wear resistance of the hypereu-tectic Fe-Cr-C hardfacing alloy surface can be improved. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|