王延忠,魏彬,宁克焱,韩明,沈蓉.Cu基粉末冶金材料表面表征与图像阀值接触分析[J].表面技术,2014,43(1):40-43. WANG Yan-zhong,WEI Bin,NING Ke-yan,HAN Ming,SHEN Rong.Topology Acquisition and Contact Analysis of Image Threshold of Cu-based Sintered Material[J].Surface Technology,2014,43(1):40-43 |
Cu基粉末冶金材料表面表征与图像阀值接触分析 |
Topology Acquisition and Contact Analysis of Image Threshold of Cu-based Sintered Material |
投稿时间:2013-07-08 修订日期:2013-08-18 |
DOI: |
中文关键词: 粉末冶金 摩擦机机理 接触分析 阀值分析 二值化处理 |
英文关键词:sintered materials friction mechanism threshold binary |
基金项目: |
|
Author | Institution |
WANG Yan-zhong | School of Mechanical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China |
WEI Bin | School of Mechanical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China |
NING Ke-yan | National Key Laboratory of Vehicular Transmission, China North Vehicle Research Institute, Beijing 100072, China |
HAN Ming | National Key Laboratory of Vehicular Transmission, China North Vehicle Research Institute, Beijing 100072, China |
SHEN Rong | National Key Laboratory of Vehicular Transmission, China North Vehicle Research Institute, Beijing 100072, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 研究 Cu 基粉末冶金摩擦材料的微接触力学特性,对该材料的表面形貌进行精确采集和合理表征。 方法 通过镭射形貌仪采集表面形貌,利用 MATLAB 对形貌点阵进行插值重构,在 ANSYS 中获得接触分析的图像,采用图像阀值分析和二值化处理。 结果 分析得到了 Cu 基粉末冶金材料接触过程的真实接触面积与轮廓接触面积范围,验证了不同接触区域的接触机理。 结论 证明了摩擦副接触过程存在复杂的弹塑性接触区域,不同机理所控制的接触区域所占的比例从 6% ~ 27% 不等。 |
英文摘要: |
[1] BINNIG G, ROHRER H, et al. Tunneling Through a Controllable Vacuum Gap[ J] . Applied Physical Letters,1981,40:178—180. [2] BINNING G. Atomic Force Microscope[ J] . Physical Review Letters,1986,56( 9) :930—933. [3] GREENWOOD J A,WILLIAMSON J B P. Contact of Nominally Flat Surfaces [ J ] . Proc Roy Soc Lond, 1966, A295:300—319. [4] WHITEHOUSE D J,ARCHARD J F. The Properties of Random Surface of Significance in Their Contact [ J] . Proc Roy Soc Lond,1970,A316:97—121. [5] CHANG W R,ETSION I,BOGY,D B. Static Friction Coefficient Model for Metallic Rough Surfaces[ J] . ASME J Tribol,1988,110:57—63. [6] LIOR K,IZHAK E. A Static Friction Model for Elastic-plastic Contacting Rough Surfaces [ J ] . Transaction of the ASME,2004,126(1) :34—40. [7] LIOR K,IZHAK E. A Semi-analytical Solution for the Sliding Inception of a Spherical Contact[ J] . Journal of Trlbology,2003,125(3) :499—506. [8] MAJUMDAR A,BHUSHAN B. Fractal Model of Elastic-plastic Contact between Rough Surfaces[ J] . ASME J Trib, 1991,113(1) : 1—11. [9] WANG Yan-zhong,CHEN Yan-yan,HAN Xiao. Research of Simulation Technology in Low-stress Machining on Tooth Surface of Spiral Bevel Gears Used in Aviation Industry [ J ] . Applied Mechanics and Materials, 2011, 86: 688—691. [10] WANG Yan-zhong,WEI Bin. Mixed-modal Disk Gas Squeeze Film Theoretical and Experimental Analysis[ J] . International Journal of Modern Physics, 2013, 25(7) : 135—168. [11] 王延忠,魏彬. 激光微造型表面流体动力润滑分析[ J ] .润滑与密封,2012,37(12) :1—4 WANG Yan-zhong, WEI Bin. Hydrodynamic Lubrication Study on Micro-texture Structure Surface [ J ] . Lubrication Engineering,2012,37(10) :1—5. [12] 王延忠,魏彬. 大功率重载摩擦元件磨损率的分形模拟方法[ J] . 润滑与密封,2012,37(10) :1—4. WANG Yan-zhong,WEI Bin. Fractal Wear Rate Prediction of Friction Elements with Heavy Duty[ J] . Lubrication Engineering,2012,37(10) :1—5. [13] 汪家道,陈大融. 规则凹坑表面形貌润滑研究[ J ] . 摩擦学学报,2003,23(1) :52—54.WANG Jia-dao, CHEN Da-rong. Study on Lubrication of Regular Concave Surface[ J] . Tribology,2003,23 (1) :52—54. [14] WANG Yan-zhong, WEI Bin, WU Xiang-yu. Wet FrictionElements Boundary Friction Mechanism and Friction Coefficient Prediction [ J ] . Tribology Industry, 2012, 34 ( 4 ) :198—205. [15] WANG Yan-zhong,WEI Bin. Friction Mechanism and Lockup Friction Coefficient Prediction for Sinter Bronze Friction Materials [ J ] . Industrial Lubrication Tribology, 2014, 66(6) :101—106. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|